Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

μ PD720102

USB 2.0 Host Controller

Document No S17999EJ4V0UD00 (4th edition)
Date Published March 2007 NS CP (N)

[MEMO]

NOTES FOR CMOS DEVICES —

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

USB logo is a trademark of USB Implementers Forum, Inc.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

- The information in this document is current as of March, 2007. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
 products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

Major Revisions in this Edition

Page	Description
	CHAPTER 1 INTRODUCTION
p. 13	Addition of the µPD720102F1-CA7-A to 1.2 Ordering Information
pp. 18, 19	Addition of the μ PD720102F1-CA7-A to 1.4 Pin Configuration
	CHAPTER 2 PIN FUNCTIONS
pp. 25 to 27	Addition of 2.2 Pin Functions of the μPD720102F1-CA7-A
	CHAPTER 3 REGISTER INFORMATION
p. 35	Addition of description to Table 3-9. EXT1 Register
p. 36	Addition of description to Table 3-10. EXT2 Register
p. 43	Addition of description to Table 3-18. EXT1 Register
p. 44	Addition of description to Table 3-19. EXT2 Register
	CHAPTER 9 HOW TO CONNECT TO EXTERNAL ELEMENTS
p. 115	Modification of Remark of Figure 9-3. RREF Connection
	CHAPTER 10 PRODUCT SPECIFICATIONS
p. 126	Addition of Max. value of PCI clock cycle time in 10.3 Electrical Specifications
p.134	Addition of CHAPTER 11 PACKAGE DRAWINGS

The mark <R> shows major revised points.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

PREFACE

Readers This manual is intended for engineers who need to be familiar with the capability of

the μ PD720102 in order to develop application systems based on it.

Purpose The purpose of this manual is to help users understand the hardware capabilities

(listed below) of the μ PD720102.

Configuration This manual consists of the following chapters:

• Introduction

- Pin functions
- · Register information
- OHCI host controller
- · EHCI host controller
- · Power management
- Hyper-speed transfer mode
- · How to write external serial ROM
- How to connect to external elements
- · Product specifications

Guidance Readers of this manual should already have a general knowledge of electronics, logic

circuits, and microcomputers.

Notation This manual uses the following conventions:

Data bit significance: High-order bits on the left side;

low-order bits on the right side

Active low: XXXX0 (Pin and signal names are suffixed with 0.)

Note: Explanation of an indicated part of text

Caution: Information requiring the user's special attention

Remark: Supplementary information Numerical value: Binary ... xxxx or xxxxb

Decimal ... xxxx

Hexadecimal ... xxxxh

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

• μPD720102 Data Sheet: S17998E

CONTENTS

CHAPT	TER 1	INTRODUCTION	13
1.1	Feat	ures	13
1.2	Orde	ering Information	13
1.3	Bloc	k Diagram	14
1.4	Pin	Configuration	16
1.5	Pin l	Information	20
CHAPT		PIN FUNCTIONS	
2.1		Functions of the μPD720102GC-YEB-A	
	2.1.1	Power supply	
	2.1.2	Analog signaling	
	2.1.3	System clock	
	2.1.4	PCI interface	
	2.1.5	USB interface	
	2.1.6	Serial ROM interface	
	2.1.7	System interface	
	2.1.8	Test signals	
2.2		Functions of the μPD720102F1-CA7-A	
	2.2.1	Power supply	
	2.2.2	Analog signaling	
	2.2.3	System clock	
	2.2.4	PCI interface	
	2.2.5	USB interface	
	2.2.6	Serial ROM interface	
	2.2.7	System interface	
	2.2.8	Test signals	27
CHAP	TFR 3	REGISTER INFORMATION	28
3.1	_	Configuration Space	
	3.1.1	PCI configuration space for OHCI host controller	
	3.1.2	PCI configuration space for EHCI host controller	
3.2	ОНС	Cl Operational Registers	
	3.2.1	Mapping of operational registers for OHCI host controller	
	3.2.2	Overview of OHCI operational registers	
3.3	EHC	Capability and Operational Registers	
	3.3.1	Mapping of capability and operational registers for EHCI host controller	
	3.3.2	Overview of EHCI capability and operational registers	
011457	TED 4	OUGL HOST CONTROLLER	=-
CHAP1		OHCI HOST CONTROLLER	
4.1		munication between OHCl Host Controller and HCD	
4.2		point Descriptor	
	4.2.1	Endpoint descriptor format	
4.0	4.2.2	Endpoint descriptor field definitions	
4.3		Sefer Descriptors	
	4.3.1	General transfer descriptor format	

	4.3.2	General transfer descriptor field definitions	79
	4.3.3	Isochronous transfer descriptor format	81
	4.3.4	Isochronous transfer descriptor field definitions	81
	4.3.5	Packet status word format	82
	4.3.6	Packet status word field definitions	82
	4.3.7	Completion code definitions	82
4.4	1 Host	t Controller Communications Area	83
	4.4.1	Host controller communications area format	83
	4.4.2	Host controller communications area description	83
CHAP	TER 5	EHCI HOST CONTROLLER	84
5.1	I Con	trol EHCI Host Controller by HCD	84
5.2	2 Isoc	hronous Transfer Descriptor	84
	5.2.1	Isochronous transfer descriptor format	84
	5.2.2	Isochronous transfer descriptor field definitions	85
5.3	3 Split	t Transaction Isochronous Transfer Descriptor	87
	5.3.1	Split transaction isochronous transfer descriptor format	87
	5.3.2	Split transaction isochronous transfer descriptor field definitions	87
5.4	1 Que	ue Element Transfer Descriptor	89
	5.4.1	Queue element transfer descriptor format	89
	5.4.2	Queue element transfer descriptor field definitions	89
5.5	5 Que	ue Head	91
	5.5.1	Queue head format	91
	5.5.2	Queue head field definitions	92
5.6	6 Peri	odic Frame Span Traversal Node (FSTN)	94
	5.6.1	Periodic frame span traversal node descriptor format	94
	5.6.2	Periodic frame span traversal node field definitions	94
CHAP	TER 6	POWER MANAGEMENT	95
6.1	l Bus	Power States and Function Power Management States	95
	6.1.1	PCI bus power states	95
	6.1.2	USB bus states	95
	6.1.3	PCI function power management states	96
6.2	2 Pow	er Management Event	97
	6.2.1	PME event support	97
	6.2.2	How to support the PME generation from D3cold	97
	6.2.3	PME0 assertion condition	99
6.3	3 Con	trol for System Clock Operation	103
	6.3.1	Clock system	103
	6.3.2	Condition for clock system stopping/resuming	104
	6.3.3	CLKRUN# support	106
	TER 7	HYPER-SPEED TRANSFER MODE	108
7.1		ing from HSMODE	
7.2		ing from PCI configuration space (or external serial ROM)	
7:3	R Non	need to support "Hyper-Speed Transfer Mode"	108

CHAPTER 8 HOW TO WRITE EXTERNAL SERIAL ROM	
8.1 Registers to Control I ² C Interface	
8.2 Supported Command for I ² C Interface	110
CHAPTER 9 HOW TO CONNECT TO EXTERNAL ELEMENTS	114
9.1 Handling Unused Pins	114
9.2 USB Port Connection	114
9.3 Internal Regulator Circuit Connection	115
9.4 Analog Circuit Connection	
9.5 Crystal Connection	
9.6 External Serial ROM Connection	
CHAPTER 10 PRODUCT SPECIFICATIONS	118
10.1 Buffer List	118
10.2 Terminology	119
10.3 Electrical Specifications	
10.4 Timing Diagram	130
CHAPTER 11 PACKAGE DRAWINGS	134

LIST OF FIGURES

No. Title	Page
OpenHCl's PCI Configuration Space	45
Enhanced HCI's PCI Configuration Space	60
Wake Up State Transition from D3cold	98
μPD720102's Clock System	103
Clock Operation Diagram (Using 30 MHz Crystal)	105
Clock Operation Diagram (Using 48 MHz Oscillator)	106
PCI Clock Stop	107
PCI Clock Start	107
Maintaining PCI Clock	107
I2C_WND0/1 vs. Byte No	111
I ² C Timing Chart	112
External Serial ROM Setting Flowchart	113
USB Downstream Port Connection	114
Internal regulator circuit Connection	115
RREF Connection	115
Crystal Connection	116
External Serial ROM Connection	117
Differential Input Sensitivity Range for Low-/Full-speed	124
Receiver Sensitivity for Transceiver at DP/DM	124
Receiver Measurement Fixtures	124
Transmit Waveform for Transceiver at DP/DM	129
Transmitter Measurement Fixtures	129
	OpenHCl's PCI Configuration Space. Enhanced HCl's PCI Configuration Space. Wake Up State Transition from D3cold

LIST OF TABLES (1/2)

Table No.	Title	Page
3-1	Function No. List	28
3-2	Configuration Space for OHCI Host Controller	29
3-3	Register Information	30
3-4	Command Register	31
3-5	Status Register	32
3-6	Base Address (BAR_OHCI) Register	32
3-7	Power Management Capabilities (PMC) Register	33
3-8	Power Management Control/Status (PMCSR) Register	34
3-9	EXT1 Register	35
3-10	EXT2 Register	36
3-11	Configuration Space for EHCI Host Controller	37
3-12	Register Information	38
3-13	Command Register	39
3-14	Status Register	40
3-15	Base Address Register	40
3-16	Power Management Capabilities (PMC) Register	41
3-17	Power Management Control/Status (PMCSR) Register	42
3-18	EXT1 Register	43
3-19	EXT2 Register	44
3-20	Operational Registers for OHCI Host Controller	46
3-21	Port_no Field vs NDP Field	53
3-22	Port_no Field vs DR and PPCM Field	54
3-23	Port No Field vs HcRhPortStatus[1:3]	56
3-24	Capability and Operational Registers for EHCI Host Controller	61
4-1	Endpoint Descriptor Format	77
4-2	Description of Endpoint Descriptors	77
4-3	General TD Format	79
4-4	Description of General TD	80
4-5	Isochronous TD Format	81
4-6	Description of Isochronous TD	81
4-7	Packet Status Word Format	82
4-8	Description of Packet Status Word	82
4-9	Description of Completion Code	82
4-10	Description of Host Controller Communications Area	83
5-1	Isochronous Transfer Descriptor Format	84
5-2	Description of Isochronous Transfer Descriptors	85
5-3	Split Transaction Isochronous Transfer Descriptor Format	87
5-4	Description of Split Transaction Isochronous Transfer Descriptors	87
5-5	Queue Element Transfer Descriptor Format	89
5-6	Description of Queue Element Transfer Descriptors	89
5-7	Queue Head Format	91

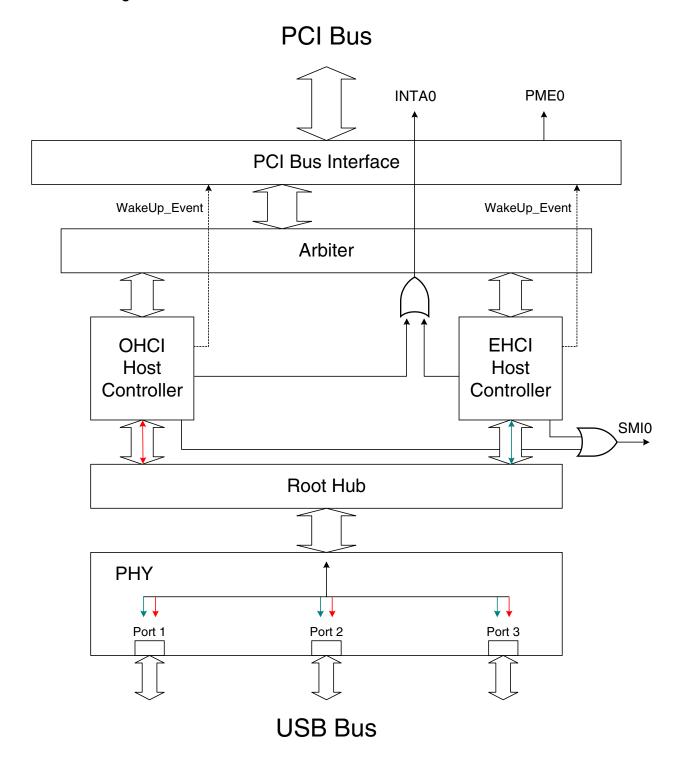
LIST OF TABLES (2/2)

Table No.	Title	Page
5-8	Description of Queue Head	92
5-9	Periodic Frame Span Traversal Node Descriptor Format	94
5-10	Description of Periodic Frame Span Traversal Node Field	94
8-1	Semantics for Each Byte/Bit in Page	110
9-1	Unused Pin Connection	114
9-2	External Parameters	116
9-3	External Parameters	117

CHAPTER 1 INTRODUCTION

The μ PD720102 complies with the universal serial bus specification revision 2.0 and open host controller interface specification for full-/low-speed signaling and Intel's enhanced host controller interface specification for high-speed signaling and works up to 480 Mbps. The μ PD720102 is integrated 2 host controller cores with PCI Interface and USB 2.0 transceivers into a single chip.

1.1 Features


- Compliant with universal serial bus specification revision 2.0 (data rate 1.5/12/480 Mbps)
- Compliant with open host controller interface specification for USB release 1.0a
- Compliant with enhanced host controller interface specification for USB revision 1.0
- PCI multi-function device consists of one OHCI host controller core for full-/low-speed signaling and one EHCI
 host controller core for high-speed signaling
- Root hub with 3 (Max.) downstream facing ports which are shared by OHCl and EHCl host controller cores.
- All downstream facing ports can handle high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) transaction
- Supports hyper-speed transfer mode using HSMODE signal
- Configurable number of downstream facing ports (1 to 3)
- 32-bit 33 MHz host interface compliant with PCI specification revision 2.2
- Supports PCI mobile design guide version 1.1
- Supports PCI-bus power management interface specification revision 1.1
- PCI bus bus-master access
- Supports 3.3 V PCI
- System clock is generated by 30 MHz crystal or 48 MHz clock input
- Operational registers direct-mapped to PCI memory space
- 3.3 V single power supply, 1.5 V internal operating voltage from on chip regulator
- · On chip Rs and Rpd resisters for USB signals

1.2 Ordering Information

Part Number	Package	Remark	
μPD720102GC-YEB-A	120-pin plastic TQFP (Fine pitch) (14 \times 14)	Lead-free product	
μPD720102F1-CA7-A	121-pin plastic FBGA (8 \times 8)	Lead-free product	

<R>

1.3 Block Diagram

CHAPTER 1 INTRODUCTION

PCI Bus Interface : handles 32-bit 33 MHz PCI bus master and target function which comply with PCI

specification revision 2.2. The number of enabled ports is set by bits in configuration

space.

Arbiter : arbitrates among OHCI host controller core and EHCI host controller core.

OHCI Host Controller : handles full- (12 Mbps)/low-speed (1.5 Mbps) signaling.

EHCI Host Controller : handles high- (480 Mbps) signaling.

Root Hub : handles USB hub function in host controller and controls connection (routing) between

host controller core and port.

PHY : consists of high-speed transceiver, full-/low-speed transceiver, serializer, deserializer,

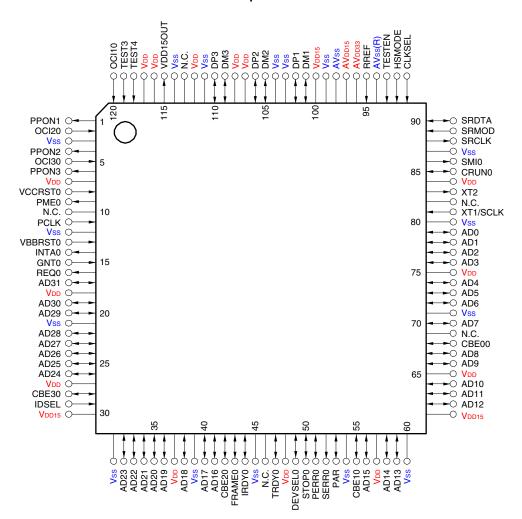
etc.

INTA0 : is the PCI interrupt signal for OHCI host controller and EHCI host controller.

SMI0 : is the interrupt signal which is specified by open host controller interface specification

for USB release 1.0a and enhanced host controller interface specification revision 1.0. The SMI signal of OHCI host controller and EHCI host controller appears at this signal.

PME0 : is the interrupt signal which is specified by PCI-Bus power management interface


specification revision 1.1. Wakeup signal of each host controller core appears at this

signal.

1.4 Pin Configuration

• 120-pin plastic TQFP (fine pitch) (14 \times 14) μ PD720102GC-YEB-A

Top View

Pin Name

• 120-pin plastic TQFP (fine pitch) (14 \times 14)

μPD720102GC-YEB-A

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	PPON1	31	Vss	61	V _{DD15}	91	CLKSEL
2	OCI20	32	AD23	62	AD12	92	HSMODE
3	Vss	33	AD22	63	AD11	93	TESTEN
4	PPON2	34	AD21	64	AD10	94	AVss(R)
5	OCI30	35	AD20	65	V _{DD}	95	RREF
6	PPON3	36	AD19	66	AD9	96	AV _{DD33}
7	V _{DD}	37	V _{DD}	67	AD8	97	AV _{DD15}
8	VCCRST0	38	AD18	68	CBE00	98	AVss
9	PME0	39	Vss	69	N.C.	99	Vss
10	N.C.	40	AD17	70	AD7	100	V _{DD15}
11	PCLK	41	AD16	71	Vss	101	DM1
12	Vss	42	CBE20	72	AD6	102	DP1
13	VBBRST0	43	FRAME0	73	AD5	103	Vss
14	INTA0	44	IRDY0	74	AD4	104	Vss
15	GNT0	45	Vss	75	V _{DD}	105	DM2
16	REQ0	46	N.C.	76	AD3	106	DP2
17	AD31	47	TRDY0	77	AD2	107	V _{DD}
18	V _{DD}	48	V _{DD}	78	AD1	108	V _{DD}
19	AD30	49	DEVSEL0	79	AD0	109	DM3
20	AD29	50	STOP0	80	Vss	110	DP3
21	Vss	51	PERR0	81	XT1/SCLK	111	Vss
22	AD28	52	SERR0	82	N.C.	112	V _{DD}
23	AD27	53	PAR	83	XT2	113	N.C.
24	AD26	54	Vss	84	V _{DD}	114	Vss
25	AD25	55	CBE10	85	CRUN0	115	VDD15OUT
26	AD24	56	AD15	86	SMI0	116	V _{DD}
27	V _{DD}	57	V _{DD}	87	Vss	117	V _{DD}
28	CBE30	58	AD14	88	SRCLK	118	TEST4
29	IDSEL	59	AD13	89	SRMOD	119	TEST3
30	V _{DD15}	60	Vss	90	SRDTA	120	OCI10

 $\textbf{Remark} \quad \text{AVss}(R) \text{ should be used to connect RREF through 1 \% precision reference resistor of 1.6 k}\Omega.$

<R> Pin Configuration

• 121-pin plastic FPBGA (8 × 8)

μPD720102F1-CA7-A

Bottom View

	_	_	_			_					
21	22	23	24	25	26	27	28	29	30	31	11
20	57	58	59	60	61	62	63	64	65	32	10
19	56	85	86	87	88	89	90	91	66	33	9
18	55	84	105	106	107	108	109	92	67	34	8
17	54	83	104	117	118	119	110	93	68	35	7
16	53	82	103	116	121	120	111	94	69	36	6
15	52	81	102	115	114	113	112	95	70	37	5
14	51	80	101	100	99	98	97	96	71	38	4
13	50	79	78	77	76	75	74	73	72	39	3
12	49	48	47	46	45	44	43	42	41	40	2
11	10	9	8	7	6	5	4	3	2	1	1
L	К	J	Н	G	F	Е	D	С	В	Α	,

<R> Pin name

• 121-pin plastic FBGA (8 \times 8)

μPD720102F1-CA7-A

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	DP3	32	RREF	63	Vss	94	V _{DD}
2	PPON1	33	V _{DD15}	64	SMI0	95	VDD15OUT
3	OCI30	34	DM1	65	AVss(R)	96	TEST3
4	VCCRST0	35	DP1	66	AV _{DD33}	97	V _{DD}
5	PCLK	36	Vss	67	Vss	98	V _{DD}
6	GNT0	37	DM2	68	Vss	99	V _{DD}
7	AD30	38	DP2	69	Vss	100	V _{DD}
8	AD28	39	V _{DD}	70	Vss	101	V _{DD15}
9	AD25	40	DM3	71	Vss	102	V _{DD15}
10	CBE30	41	TEST4	72	Vss	103	Vss
11	Vss	42	OCI20	73	OCI10	104	Vss
12	AD23	43	PPON3	74	PPON2	105	V _{DD15}
13	AD21	44	PME0	75	VBBRST0	106	V _{DD15}
14	AD18	45	INTA0	76	AD31	107	Vss
15	CBE20	46	REQ0	77	AD27	108	Vss
16	TRDY0	47	AD29	78	IDSEL	109	Vss
17	STOP0	48	AD26	79	Vss	110	AVss
18	PAR	49	AD24	80	AD19	111	V _{DD}
19	AD14	50	AD22	81	AD16	112	V _{DD}
20	Vss	51	AD20	82	IRDY0	113	V _{DD}
21	AD12	52	AD17	83	SERR0	114	Vss
22	AD11	53	FRAME0	84	CBE10	115	Vss
23	CBE00	54	DEVSEL0	85	AD9	116	V _{DD}
24	AD6	55	PERR0	86	AD8	117	V _{DD}
25	AD3	56	AD15	87	AD4	118	V _{DD}
26	AD1	57	AD13	88	AD0	119	V _{DD}
27	XT1/SCLK	58	AD10	89	CRUN0	120	V _{DD}
28	XT2	59	AD7	90	SCLK	121	V _{DD}
29	SRMOD	60	AD5	91	SRDTA		
30	HSMODE	61	AD2	92	CLKSEL		
31	TESTEN	62	Vss	93	AVDD15		

Remark AVss(R) should be used to connect RREF through 1 % precision reference resistor of 1.6 k Ω .

1.5 Pin Information

(1/2)

Pin Name	I/O Normal (Test)	Buffer Type	Active Level	Function
AD (31:0)	I/O	3.3 V PCI I/O with OR input		PCI "AD [31:0]" signal
CBE (3:0)0	I/O	3.3 V PCI I/O with OR input		PCI "C/BE [3:0]" signal
PAR	I/O	3.3 V PCI I/O with OR input		PCI "PAR" signal
FRAME0	I/O	3.3 V PCI I/O with OR input	Low	PCI "FRAME#" signal
IRDY0	I/O	3.3 V PCI I/O with OR input	Low	PCI "IRDY#" signal
TRDY0	I/O	3.3 V PCI I/O with OR input	Low	PCI "TRDY#" signal
STOP0	I/O	3.3 V PCI I/O with OR input	Low	PCI "STOP#" signal
IDSEL	1	3.3 V PCI input with OR input	High	PCI "IDSEL" signal
DEVSEL0	I/O	3.3 V PCI I/O with OR input	Low	PCI "DEVSEL#" signal
REQ0	O (I/O)	3.3 V PCI I/O with OR input	Low	PCI "REQ#" signal
GNT0	I	3.3 V PCI input with OR input	Low	PCI "GNT#" signal
PERR0	I/O	3.3 V PCI I/O with OR input	Low	PCI "PERR#" signal
SERR0	O (I/O)	3.3 V PCI I/O with OR input Note 1	Low	PCI "SERR#" signal
INTA0	O (I/O)	3.3 V PCI I/O with OR input Note 1	Low	PCI "INTA#" signal
PCLK	I	3.3 V PCI input with OR input		PCI "CLK" signal
VBBRST0	I	3.3 V input schmitt input	Low	PCI "RST#" signal
CRUN0	I/O	3.3 V PCI I/O with OR input	Low	PCI "CLKRUN#" signal
PME0	0	N-ch open drain buffer	Low	PCI "PME#" signal
VCCRST0	I	3.3 V input schmitt input	Low	PCI "RST#" signal for D3cold support
SMI0	O (I/O)	3.3 V I/O buffer	Low	System management interrupt output
XT1/SCLK	I	OSC block		System clock input or oscillator in
XT2	0	OSC block		Oscillator out
CLKSEL	I	3.3 V Input		Input clock frequency select signal
HSMODE	1	3.3 V Input	High	Hyper-Speed transfer mode enable signal
SRCLK	O (I/O)	3.3 V I/O buffer		Serial ROM clock out
SRDTA	I/O	3.3 V I/O buffer		Serial ROM data
SRMOD	I	3.3 V Input with pull down resistor	High	Serial ROM input enable
TESTEN Note 2	I	3.3 V Input with pull down resistor	High	Test enable pin
TEST3 Note 2	I	3.3 V Input with pull down resistor	High	Test control
TEST4 Note 2	I	3.3 V Input with pull down resistor	High	Test control

Notes 1. These signals become N-ch open drain buffers in normal operation.

2. These pins must be open on board.

(2/2)

				(2/2)
Pin Name	I/O Normal (Test)	Buffer Type	Active Level	Function
OCI (3:1)0	I (I/O)	3.3 V I/O buffer with OR input	Low	USB port's overcurrent status input
PPON (3:1)	O (I/O)	3.3 V I/O buffer	High	USB port's power supply control output
DP (3:1)	I/O	USB high speed D+ I/O		USB high speed D+ signal
DM (3:1)	I/O	USB high speed D- I/O		USB high speed D- signal
RREF	Α	Analog		Reference resistor
VDD15OUT	0	Internal Regulator Output		1.5 V voltage output from internal regulator
V _{DD15}				1.5 V VDD from VDD15OUT
V _{DD}				3.3 V V _{DD}
AV _{DD15}	AV _{DD15}			1.5 V VDD for analog circuit
AV _{DD33}	V _{DD33}			3.3 V VDD for analog circuit
Vss				Vss
AVss				Vss for analog circuit
AVss(R)	AVss(R)			Vss for RREF circuit
N.C.				No connection

Remark The signal marked as "(I/O)" in the above table operates as I/O signals during testing. However, they do not need to be considered in normal use.

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Functions of the μ PD720102GC-YEB-A

The pin type describes a signal either as analog, power, input, or I/O (bi-directional).

2.1.1 Power supply

Pin	Pin No.	Direction	Function
V _{DD}	7, 18, 27, 37, 48, 57, 65, 75, 84, 107, 108, 112, 116, 117	Power	+3.3 V power supply
V _{DD15}	30, 61, 100	Power	+1.5 V power supply. These pins must be supplied from VDD15OUT, output from internal regulator
VDD15OUT	115	Power	+1.5 V voltage output from internal regulator.
AV _{DD33}	96	Power	+3.3 V power supply for analog circuit
AV _{DD15}	97	Power	+1.5 V power supply for analog circuit
Vss	3, 12, 21. 31, 39, 45, 54, 60, 71, 80, 87, 99, 103, 104, 111, 114	Power	Ground
AVss	98	Power	Ground for analog circuit
AVss(R)	94	Power	Ground for reference resistor

2.1.2 Analog signaling

Pin	Pin No.	Direction	Function
RREF	95	Analog	RREF must be connected to a 1% precision reference resistor of 1.6 k Ω . The other side of the resistor must be connected to AVss(R) which must be connected to stable AVss.

2.1.3 System clock

Pin	Pin No.	Direction	Caution
XT1/SCLK	81	I	System clock input or Oscillator input Apply 48-MHz clock input or connect to 30-MHz crystal. Clock frequency is selected by CLKSEL.
XT2	83	0	If 48-MHz clock input is applied to SCLK, this signal must be opened. Otherwise, connect to 30-MHz crystal. Clock frequency is selected by CLKSEL.

2.1.4 PCI interface

Pin	Pin No.	Direction	Function
AD (31:0)	17, 19, 20, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 38, 40, 41, 56, 58, 59, 62, 63, 64, 66, 67, 70, 72, 73, 74, 76, 77, 78, 79	I/O	PCI "AD [31:0]" signal
CBE (3:0)0	28, 42, 55, 68	I/O	PCI "C/BE [3:0]" signal
PAR	53	I/O	PCI "PAR" signal
FRAME0	43	I/O	PCI "FRAME#" signal
IRDY0	44	I/O	PCI "IRDY#" signal
TRDY0	47	I/O	PCI "TRDY#" signal
STOP0	50	I/O	PCI "STOP#" signal
IDSEL	29	I	PCI "IDSEL" signal
DEVSEL0	49	I/O	PCI "DEVSEL#" signal
REQ0	16	0	PCI "REQ#" signal
GNT0	15	I	PCI "GNT#" signal
PERR0	51	I/O	PCI "PERR#" signal
SERR0	52	0	PCI "SERR#" signal
INTA0	14	0	PCI "INTA#" signal
PCLK	11	I	PCI "CLK" signal
VBBRST0	13	I	PCI "RST#" signal
VCCRST0	8	I	PCI "RST#" signal for D3cold support. This signal must be clamped to high, when system does not support D3cold wakeup.
CRUN0	85	I/O	PCI "CLKRUN#" signal
PME0	9	0	PCI "PME#" signal

Remarks 1. For details of PCI operations, see the PCI Local Bus Specification Revision 2.2.

2. See CHAPTER 6 POWER MANAGEMENT to decide the setting of VBBRST0/VCCRST0. The setting of these signals are decided by power management support level.

2.1.5 USB interface

Pin	Pin No.	Direction	Function
DP (3:1)	102, 106, 110	I/O	USB D+ high-speed signal Shared with DMx pins having the same numbers.
DM (3:1)	101, 105, 109	I/O	USB D- high-speed signal Shared with DPx pins having the same numbers.
OCI (3:1)0	120, 2, 5	I	Over-current status input of the down stream facing ports. 1: No over-current condition is detected. 0: Over-current condition is detected.
PPON (3:1)	1, 4, 6	0	Power supply control output for downstream facing ports. 0: Power supply OFF 1: Power supply ON

2.1.6 Serial ROM interface

Pin	Pin No.	Direction	Caution
SRCLK	88	0	Serial ROM Clock Out
SRDTA	90	I/O	Serial ROM Data
SRMOD	89	I	Serial ROM Input Enable 0 (default): Serial ROM inactive. 1: Serial ROM active.

2.1.7 System interface

Pin	Pin No.	Direction	Caution
CLKSEL	91	I	Clock frequency selects 1: External 48MHz clock input mode. XT2 must be open. 0: 30MHz crystal mode.
HSMODE	92	I	Hyper-Speed transfer mode selects. 1: Hyper-Speed transfer mode is enabled. 0: Hyper-Speed transfer mode is disabled.
SMIO	86	0	System management interrupt output 1: Interrupt occurs 0: Interrupt does not occur

2.1.8 Test signals

Pin	Pin No.	Direction	Caution
TESTEN	93	I	Test enable pin. This must be open on board.
TEST3	119	1	Test mode pin. This must be open on board.
TEST4	118	1	Test enable pin. This must be opened on board.
N.C	10, 46, 69, 82, 113	-	No Connection.

<R> 2.2 Pin Functions of the μ PD720102F1-CA7-A

The pin type describes a signal either as analog, power, input, or I/O (bi-directional).

2.2.1 Power supply

Pin	Pin No.	Direction	Function
V _{DD}	39, 94, 97, 98, 99, 100, 111, 112, 113, 116, 117, 118, 119, 120, 121	Power	+3.3 V power supply
V _{DD15}	33, 101, 102, 105, 106	Power	+1.5 V power supply. These pins must be supplied from VDD15OUT, output from internal regulator
VDD15OUT	95	Power	+1.5 V voltage output from internal regulator.
AV _{DD33}	66	Power	+3.3 V power supply for analog circuit
AV _{DD15}	93	Power	+1.5 V power supply for analog circuit
Vss	11, 20, 36, 62, 63, 67, 68, 69, 70, 71, 72, 79, 103, 104, 107, 108, 109, 114, 115	Power	Ground
AVss	110	Power	Ground for analog circuit
AVss(R)	65	Power	Ground for reference resistor

2.2.2 Analog signaling

Pin	Pin No.	Direction	Function
RREF	32	Analog	RREF must be connected to a 1% precision reference resistor of 1.6 k Ω . The other side of the resistor must be connected to AVss(R) which must be connected to stable AVss.

2.2.3 System clock

Pin	Pin No.	Direction	Caution
XT1/SCLK	27	I	System clock input or Oscillator input Apply 48-MHz clock input or connect to 30-MHz crystal. Clock frequency is selected by CLKSEL.
XT2	28	0	If 48-MHz clock input is applied to SCLK, this signal must be opened. Otherwise, connect to 30-MHz crystal. Clock frequency is selected by CLKSEL.

2.2.4 PCI interface

Pin	Pin No.	Direction	Function
AD (31:0)	76, 7, 47, 8, 77, 48, 9, 49, 12, 50, 13, 51, 80, 14, 52, 81, 56, 19, 57, 21, 22, 58, 85, 86, 59, 24, 60, 87, 25, 61, 26, 88	I/O	PCI "AD [31:0]" signal
CBE (3:0)0	10, 15, 84, 23	I/O	PCI "C/BE [3:0]" signal
PAR	18	I/O	PCI "PAR" signal
FRAME0	53	I/O	PCI "FRAME#" signal
IRDY0	82	I/O	PCI "IRDY#" signal
TRDY0	16	I/O	PCI "TRDY#" signal
STOP0	17	I/O	PCI "STOP#" signal
IDSEL	78	I	PCI "IDSEL" signal
DEVSEL0	54	I/O	PCI "DEVSEL#" signal
REQ0	46	0	PCI "REQ#" signal
GNT0	6	I	PCI "GNT#" signal
PERR0	55	I/O	PCI "PERR#" signal
SERR0	83	0	PCI "SERR#" signal
INTA0	45	0	PCI "INTA#" signal
PCLK	5	I	PCI "CLK" signal
VBBRST0	75	I	PCI "RST#" signal
VCCRST0	4	I	PCI "RST#" signal for D3cold support. This signal must be clamped to high, when system does not support D3cold wakeup.
CRUN0	89	I/O	PCI "CLKRUN#" signal
PME0	44	0	PCI "PME#" signal

Remarks 1. For details of PCI operations, see the PCI Local Bus Specification Revision 2.2.

2. See CHAPTER 6 POWER MANAGEMENT to decide the setting of VBBRST0/VCCRST0. The setting of these signals are decided by power management support level.

2.2.5 USB interface

Pin	Pin No.	Direction	Function
DP (3:1)	1, 38, 35	I/O	USB D+ high-speed signal Shared with DMx pins having the same numbers.
DM (3:1)	40, 37, 34	I/O	USB D- high-speed signal Shared with DPx pins having the same numbers.
OCI (3:1)0	3, 42, 73	ı	Over-current status input of the down stream facing ports. 1: No over-current condition is detected. 0: Over-current condition is detected.
PPON (3:1)	43, 74, 2	0	Power supply control output for downstream facing ports. 0: Power supply OFF 1: Power supply ON

2.2.6 Serial ROM interface

Pin	Pin No.	Direction	Caution
SRCLK	90	0	Serial ROM Clock Out
SRDTA	91	I/O	Serial ROM Data
SRMOD	29	I	Serial ROM Input Enable 0 (default): Serial ROM inactive. 1: Serial ROM active.

2.2.7 System interface

Pin	Pin No.	Direction	Caution
CLKSEL	92	I	Clock frequency selects 1: External 48MHz clock input mode. XT2 must be open. 0: 30MHz crystal mode.
HSMODE	30	I	Hyper-Speed transfer mode selects. 1: Hyper-Speed transfer mode is enabled. 0: Hyper-Speed transfer mode is disabled.
SMIO	64	0	System management interrupt output 1: Interrupt occurs 0: Interrupt does not occur

2.2.8 Test signals

Pin	Pin No.	Direction	Caution
TESTEN	31	I	Test enable pin. This must be open on board.
TEST3	96	ı	Test mode pin. This must be open on board.
TEST4	41	I	Test enable pin. This must be opened on board.

CHAPTER 3 REGISTER INFORMATION

The μ PD720102 consists of one Open HCI (OHCI) Host Controller cores and one Enhanced HCI (EHCI) Host Controller core. OHCI Host Controller handles full-speed and low-speed device (USB1.x compliant device), which is connected to root hub port on μ PD720102. On the other hand, EHCI host controller handles high-speed device (USB2.0 compliant device), which is connected to root hub port on μ PD720102. The following sections show PCI configuration space and register information for each host controller. The number of valid ports is controlled by "EXT1" register in EHCl's (OHCl's) configuration space.

3.1 PCI Configuration Space

The configuration registers are accessed in order to set up hardware resources, device characteristics or operations, etc. in PCI Local Bus. The following sections describe the PCI Configuration Space, which is the address space for the configuration register. For more detail description, see the PCI Local Bus Specification Revision 2.2. The settings in PCI configuration space of one Host Controller core are independent of the setting in PCI configuration space of the other, except for "EXT1/EXT2" register respectively. For example, if "Bus Master" bit in command register of OHCI Host Controller is set to "0", the bus master function of the OHCI Host Controller is disabled. At that time, if "Bus Master" bit in command register of EHCI Host Controller is set to "1", the bus master function of EHCI Host Controller is enabled. All corresponding bits shall be set accordingly for each host controller.

Table 3-1. Function No. List

Function	Function number	Supported port
OHCI Host Controller	0	Port 1, 2, and 3
EHCI Host Controller	1	Port 1, 2, and 3

3.1.1 PCI configuration space for OHCI host controller

Table 3-2. Configuration Space for OHCI Host Controller

31	24	123 1615 87 0				
Device ID			Vend	00h		
	Sta	atus	Com	mand	04h	
		Class Code		Revision ID	08h	
BIST		Header Type	Latency Timer	Cache Line Size	0Ch	
		BAR_OHO	CI Register		10h	
					14h	
					18h	
		Rese	erved		1Ch	
					20h	
					24h 28h	
			erved	Subsystem Vender ID		
	Subsy	stem ID	-	2Ch		
		<u> </u>	M Base Address		30h	
		Reserved		Cap_ptr	34h	
		T	erved		38h	
Max_Lat		Min_Gnt	Interrupt Pin	Interrupt Line	3Ch	
	PI	MC	Next_Item_Ptr	Cap_ID	40h	
Data		PMCSR_BSE	PMC	CSR	44h	
Reserved						
EXT1						
		EX	T2		E4h	

Table 3-3. Register Information

Register	Address	bits	Read/ Write	Value (Default)	Comment
Vender ID	00h	15 : 0	R	1033h	NEC's vendor ID
Device ID	02h	15 : 0	R	0035h	NEC OHCl's device ID
Command	04h	15 : 0			See Table 3-4.
Status	06h	15 : 0			See Table 3-5.
Revision ID	08h	7:0	R	44h	Revision ID
Class Code -Base Class	09h	23 : 16	R	0Ch	Serial Bus Controller Device
-Sub_Class		15 : 8	R	03h	USB Device
-Programming Interface		7:0	R	10h	Open HCI Host Controller
Cache Line Size	0Ch	7:0	R/W	00h	Cache Line Size
Latency Timer	0Dh	7:2	R/W	000010b	Latency Timer for this PCI bus master Note
		1:0	R	00b	
Header Type	0Eh	7:0	R	80h	This is PCI Multi-function.
BIST	0Fh	7:0	R	R 00h BIST is not supported.	
Base Address Register	10h	31:0			See Table 3-6.
Subsystem Vender ID	2Ch	15 : 0	R (/W)	1033h	Indicates Subsystem Vender ID
Subsystem ID	2Eh	15 : 0	R (/W)	0035h	Indicates Subsystem ID
Expansion ROM Base Address	30h	31 : 0	R	0000h	Expansion ROM address
Cap_ptr	34h	7:0	R	40h	Indicates Capability List header
Interrupt Line	3Ch	7:0	R/W	00h	Indicates interrupt line's route
Interrupt Pin	3Dh	7:0	R	01h	Routing to INTA0
Min_Gnt	3Eh	7:0	R (/W)	01h	Minimum request for burst period.
Max_Lat	3Fh	7:0	R (/W)	2Ah	Frequency request of PCI access
Cap_ID	40h	7:0	R	01h	ID for PCI Power Management reg.
Next_Item_Ptr	41h	7:0	R	00h	There is no next item in the list.
PMC	42h	15 : 0	See Table 3-7.		See Table 3-7 .
PMCSR	44h	15 : 0	See Table 3-8.		See Table 3-8.
PMCSR_BSE	46h	7:0	R	00h	Not PCI-to-PCI bridge device
Data	47h	7:0	R	00h	No support
EXT1	E0h	32 : 0	See Table 3-9.		See Table 3-9.
EXT2	E4h	32 : 0	See Table 3-10 .		

Note This register should be set by system (OS). However, some system may not set this register. So, default value of this register is 08h.

Remark The register marked as "(/W)" in the above table can be written by BIOS when ID_write_enable in EHCl's (OHCl's) configuration space is set to "1". On the other, the value of these registers can be loaded from external serial ROM with I²C I/F before starting PCl configuration registers access if serial ROM is available.

Table 3-4. Command Register

Field	bit	Read/ Write	Value (Default)	Comment
I/O space	0	R	0b	No support I/O space.
Memory space	1	R/W	0b	Controls response to memory access
				0: Memory access disable
				1: Memory access enable
				After reset, this bit is set to "0".
Bus Master	2	R/W	0b	Controls bus master operation
				0: Bus master functionality disable
				1: Bus master functionality enable
				After reset, this bit is set to "0".
Special Cycles	3	R	0b	Ignores special cycles
Memory write and invalidate enable	4	R/W	0b	Enables memory write and invalidate command.
				Memory write and invalidate command disable Memory write and invalidate command enable
				After reset, this bit is set to "0".
VGA palette snoop	5	R	0b	Sets VGA palette snoop as invalid
Parity Error response	6	R/W	0b	Controls response to parity error.
				PERR0 can not assert. PERR0 can assert.
				Even this bit is set to "0", when parity error is detected. Detected parity error bit in Status Reg. is set to "1".
				After reset, this bit is set to "0".
Wait cycle control	7	R	0b	Address/data stepping is not supported.
SERR# enable	8	R/W	0b	Controls response to system errors.
				0: SERR0 can not assert.
				1: SERR0 can assert.
				After reset, this bit is set to "0".
Fast back-to-back enable	9	R	0b	Fast back-to-back access is not supported.
Reserved	15 : 10	R	000000b	Reserved

Table 3-5. Status Register

Field	bit	Read/ Write	Value	Comment	
Reserved	3:0	R	0000b	Reserved	
Capabilities List	4	R	1b	Supports Power Management	
66 MHz capable	5	R	0b	33 MHz operation	
Reserved	6	R	0b	Reserved	
Fast back-to-back capable	7	R	0b	Fast back-to-back access is not supported.	
Master Data Parity Error	8	R/W	This bit is	set when the following three conditions are met.	
			` '	ost controller asserted PERR0 (on a read), or ved PERR0 asserted (on a write).	
			` '	ost controller setting the bit acted as the bus master operation in which the error occurred	
			(3) The Pa	arity Error Response bit (Command register) is set.	
			This bit ca	n be cleared by setting to "1" from PCI.	
DEVSEL timing	10:9	R	01b	DEVSEL0 assert timing: Medium speed	
Signaled target abort	11	R/W	_	sets to "1" whenever it terminates a transaction with ort. This bit can be cleared by set to "1" from PCI.	
Received target abort	12	R/W		er sets to "1" whenever its transaction is terminated et-abort. This bit can be cleared by set to "1" from PCI.	
Received master abort	13	R/W	The master sets to "1" whenever it terminates a transaction with Master-abort. This bit can be cleared by set to "1" from PCI.		
Signaled system error	14	R/W	"1" is set to this bit when SERR0 is asserted. This bit can be cleared by set to "1" from PCI.		
Detected parity error	15	R/W	"1" is set to this bit when Address/Data parity error is detected even Parity Error response bit in Command Reg. is set to "0". This bit can be cleared by set to "1" from PCI.		

Table 3-6. Base Address (BAR_OHCI) Register

Field	bit	Read/ Write	Value (Default)	Comment
Memory space indicator	0	R	0b	Operational registers are mapped to main memory space.
Туре	2:1	R	00b	Operational registers can be allocated in any part of the 4-G main memory space.
Prefetchable	3	R	0b	Prefetch is disabled.
Base address (LSB)	11 : 4	R	00h	Operational registers have 4-Kbyte address space.
Base address (MSB)	31 : 12	R/W	000h	Indicates the high-order 20 bits of the base address in the Operational registers.

Table 3-7. Power Management Capabilities (PMC) Register

Field	bit	Read/ Write	Value (Default)	Comment
Version	2:0	R	010b	PCI Power Management Interface Specification release 1.1
PME Clock	3	R	0b	PCLK is not required for PME0 assertion.
Reserved	4	R	0b	Reserved
DSI	5	R	0b	Does not required Specific Initialization before the generic class device driver is able to use it.
Aux_Current	8:6	R (/W)	000b	Indicates current requirement
				If PME0 generation from D3cold is not supported by this host controller core, this field must return a value of "000b" when read.
				If PME0 generation from D3cold is supported by this host controller core, following assignments apply:
				Bit 3.3Vaux
				8 7 6 Max. Current Required
				1 1 1 375 mA
				1 1 0 320 mA 1 0 1 270 mA
				1 0 0 220 mA
				0 1 1 160 mA
				0 1 0 100 mA
				0 0 1 55 mA
				0 0 0 0 (self powerd)
D1_support	9	R	1b	Support D1 Power Management State
D2_support	10	R	1b	Support D2 Power Management State
PME_support	15	R (/W)	0b	Indicates whether D3cold is supported or not.
	14 : 11	R	1111b	PME0 can be asserted from D0, D1, D2, D3hot.

Remark The register marked as "(/W)" in the above table can be written by BIOS when ID_write_enable bit is set to "1". On the other, the value of these registers can be loaded from external serial ROM with I²C I/F before starting PCI configuration registers access if serial ROM is available.

Table 3-8. Power Management Control/Status (PMCSR) Register

Field	bit	Read/ Write	Value (Default)	Comment
Power State	1:0	R/W	00b	Shows power state of a host controller core and sets the host controller core into a new power state.
				00b: D0 01b: D1 10b: D2 11b: D3 _{hot}
Reserved	7:2	R	00h	Reserved
PME_En	8	R/W	0b	Enable to assert PME0.
				PME0 assertion disable PME0 assertion enable
				This bit default to "0" if the host controller core does not support PME0 generation from D3cold.
				If the host controller core supports PME0 generation from D3cold, then this bit is sticky and must be explicitly cleared by the OS each time it is initially loaded.
Data_Select	12:9	R	0000b	Data register is not implemented.
Data_Scale	14 : 13	R	00b	Data register is not implemented.
PME_Status	15	R/W	0b	PME_Status is set to "1" when ResumeDetected (RD) bit of HcInterruptStatus Reg. in OHCI is set to "1" even PME_En bit is set to "0". This bit can be cleared by set to "1" from PCI.
				This bit defaults to "0" if the host controller core does not support PME0 generation from D3cold.
				If the host controller core supports PME0 generation from D3cold, then this bit is sticky and must be explicitly cleared by the OS each time it is initially loaded.

Remark When Power State is not "D0", the function assumes that it is in Global Suspend and internal clock is stopped.

Table 3-9. EXT1 Register

Field	bit	Read/ Write	Value (Default)	Comment
Port_no	1:0	R/W	3h	Configures valid port number. Value Active ports 3h Port 1, 2, and 3 2h Port 1 and 2 1h Port 1 Prohibited setting the value except for above mentioned.
Ppcnt	2	R/W	1b	Set PPC bit in HCSPARAMS reg. 0: PPC is set to "0". HC does not have the port power control switches. And then, port power is always active. 1: PPC is set to "1". HC has the port power control switches. If port power is always active, this bit should be set to "0" and NPS bit in OHCI's HcRhDescriptorA reg. should be set to "1".
NEC private #1	3	R/W	1b	Prohibited setting to "0".
NEC private #2	4	R/W	1b	Prohibited setting to "0".
NEC private #3	5	R/W	0b	Prohibited setting to "1".
NEC private #4	6	R/W	0b	Prohibited setting to "1".
ID_write_enable	7	R/W	Ob	Write protection of Subsystem ID and Subsystem Vendor ID, Min_Gnt, Max_Lat, and PME_support. 0: Write Mask 1: Write Enable
NEC private #5	11:8	R/W	3h	Prohibited setting the value except for "3h".
NEC private #6	12	R/W	1b	Prohibited setting to "0".
Hyper-Speed transfer control #1	13	R/W (R)	0b (1b)	Sets Hyper-Speed transfer mode for bulk/control OUT transfer. 1: Enabled. 0: Disabled. Compatible with µPD720101. The setting of this bit is valid only when HSMODE pin is low level.
NEC private #7	18-14	R/W	10h	Prohibited setting the value except for "10h".
Hyper-Speed transfer control #2	23-19	R/W	02h	Sets Hyper-Speed transfer mode for bulk/control IN transfer. 02 - 03h: High 04 - 0Fh: Medium 10h: Disabled. Compatible with µPD720101.
Potpgt	31 : 24	R/W	01h	Set the value of POTPGT in OHCl's HcRhDescriptorA reg.

Remarks 1. The value of these registers except for ID_write_enable bit can be loaded from external serial ROM with I²C I/F before starting PCI configuration registers access if serial ROM is available.

- 2. This register equals to EXT1 register which is indicated in EHCl configuration space. So, this register can be accessed by offset address E0h of EHCl configuration register.
- 3. The registers marked as "(R)" and "(#value)" in the above table are set by HSMODE pin.

<R>

Table 3-10. EXT2 Register

	Field	bit	Read/ Write	Value (Default)	Comment
	EHCI_mask	0	R/W	0b	Enables EHCI host controller
					O: EHCl host controller is enable. EHCl host controller is disable. All PCl access (configuration and memory) to EHCl related space is ignored and EHCl does not work.
	Hyper-Speed transfer control #3	1	R/W (R)	0b (1b)	Hyper-Speed transfer mode selects for bulk/control IN/OUT transfer.
			, ,	` ,	 Enabled. Disabled. Compatible with μPD720101.
<r></r>					The setting of this bit is valid only when HSMODE pin is low level.
	NEC private #8	2	R/W	0b	Prohibited setting to "1".
	Reserved	5:3	R	0h	Reserved
	NEC private #9	6	R	1b	Fixed value.
	NEC private #10	7	R/W	0b	Prohibited setting to "1".
	NEC private #11	15 : 8	R/W	6Ch	Prohibited setting the value except for "6Ch".
	Reserved	31 : 16	R	000h	Reserved

Remarks1. This register except EHCI_mask bit can be accessed by offset address E4h of EHCI configuration register. NEC Electronics strongly recommends to set "1" in EHCI_mask bit, when EHCI function is not

2. The register marked as "(R)" and "(#value)" in the above table is set by HSMODE pin.

3.1.2 PCI configuration space for EHCI host controller

Table 3-11. Configuration Space for EHCI Host Controller

31	24	23 16	15 8	Offset				
	Devi	ce ID	Vend	00h				
	Sta	tus	Comi	04h				
		Class Code		Revision ID	08h			
	BIST	Header Type	Latency Timer	Cache Line Size	0Ch			
		USB Base Add	dress Register		10h			
					14h			
					18h			
		Rese	erved		1Ch			
					20h			
					24h			
		Rese			28h			
	Subsys		Subsystem	Vender ID	2Ch			
		Expansion RON	// Base Address		30h			
		Reserved		Cap_ptr	34h			
		Rese			38h			
	Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	3Ch			
	PN		Next_Item_Ptr	Cap_ID	40h			
	Data	PMCSR_BSE	PMC	CSR	44h			
		_			46h			
		Rese	erved					
	DODTW	AKECAD	FLADI	CDDN	5Ch 60h			
	PORTWAKECAP FLADJ SBRN							
	David I							
Reserved								
	EVT1							
	EXT1							
	EXT2 USBLEGSUP							
		USBLEG			E8h ECh			
		USBLEG	UILOIO		ECI			

Table 3-12. Register Information

(1/2)

	1		1		(1/2)
Register	Address	bits	Read/ Write	Value (Default)	Comment
Vender ID	00h	15 : 0	R	1033h	NEC's vendor ID
Device ID	02h	15 : 0	R	00E0h	NEC EHCI's device ID
Command	04h	15 : 0			See Table 3-13 .
Status	06h	15 : 0			See Table 3-14.
Revision ID	08h	7:0	R	05h	Revision ID
Class Code -Base Class	09h	23 : 16	R	0Ch	Serial Bus Controller Device
-Sub_Class		15 : 8	R	03h	USB Device
-Programming Interface		7:0	R	20h	Enhanced HCI Host Controller
Cache Line Size	0Ch	7:0	R/W	00h	Cache Line Size
Latency Timer	0Dh	7:2	R/W	010001b	Latency Timer for this PCI bus master Note
		1:0	R	00b	
Header Type	0Eh	7:0	R	00h	Not a PCI-to-PCI Bridge.
BIST	0Fh	7:0	R	00h	BIST is not supported.
Base Address Register	10h	31 : 0			See Table 3-15 .
Subsystem Vender ID	2Ch	15:0	R (/W)	1033h	Indicates Subsystem Vender ID
Subsystem ID	2Eh	15 : 0	R (/W)	00E0h	Indicates Subsystem ID
Expansion ROM Base Address	30h	31 : 0	R	0000h	Expansion ROM address
Cap_ptr	34h	7:0	R	40h	Indicates Capability List header
Interrupt Line	3Ch	7:0	R/W	00h	Indicates interrupt line's route
Interrupt Pin	3Dh	7:0	R	01h	Routing to INTA0
Min_Gnt	3Eh	7:0	R (/W)	10h	Minimum request for burst period.
Max_Lat	3Fh	7:0	R (/W)	22h	Frequency request of PCI access
Cap_ID	40h	7:0	R	01h	ID for PCI Power Management reg.
Next_Item_Ptr	41h	7:0	R	00h	There is no next item in the list.
PMC	42h	15:0			See Table 3-16 .
PMCSR	44h	15 : 0			See Table 3-17 .
PMCSR_BSE	46h	7:0	R	00h	Not PCI-to-PCI bridge device
Data	47h	7:0	R	00h	No support
SBRN	60h	7:0	R	20h	Serial Bus Release Number
FLADJ	61h	5:0	R/W	20h	Frame Length Adjustment
		7:6	R	00b	Default SOF cycle time is 60000.
PORTWAKECAP	62h	15:0	R/W	003Fh	Port wake capabilities (1:3) ports are to be used for wake events.

Note This register should be set by system (OS). However, some system may not set this register. So, default value of this register is 44h.

(2/2)

Register	Address	bits	Read/ Write	Value (Default)	Comment	
EXT1	E0h	32:0	See Table 3-18.			
EXT2	E4h	32:0	See Table 3-19.			
USBLEGSUP	E8h	32:0	R, R/W	0000001h	USB Legacy Support Extended Capability	
USBLEGCTLSTS	ECh	32:0	R, R/W, R/W/C	0000h	USB Legacy Support Control/Status	

Remark The register marked as "(/W)" in the above table can be written by BIOS when ID_write_enableable bit is set to "1". On the other, the value of these registers can be loaded from external serial ROM with I²C I/F before starting PCI configuration registers access if serial ROM is available.

Table 3-13. Command Register

Field	bit	Read/ Write	Value (Default)	Comment
I/O space	0	R	0b	No support I/O space.
Memory space	1	R/W	0b	Controls response to memory access
				O: Memory access disable H: Memory access enable
				After reset, this bit is set to "0".
Bus Master	2	R/W	0b	Controls bus master operation
2000010:			0.0	0: Bus master functionality disable
				Bus master functionality enable
				After reset, this bit is set to "0".
Special Cycles	3	R	0b	Ignores special cycles
Memory write and invalidate enable	4	R/W	0b	Enables memory write and invalidate command.
				Memory write and invalidate command disable Memory write and invalidate command enable
				After reset, this bit is set to "0".
VGA palette snoop	5	R	0b	Sets VGA palette snoop as invalid
Parity Error response	6	R/W	0b	Controls response to parity error.
				0: PERR0 can not assert.
				1: PERR0 can assert.
				Even this bit is set to "0", when parity error is detected, Detected parity error bit in Status Reg. is set to "1".
				After reset, this bit is set to "0".
Wait cycle control	7	R	0b	Address/data stepping is not supported.
SERR# enable	8	R/W	0b	Controls response to system errors.
				0: SERR0 can not assert.
				1: SERR0 can assert.
				After reset, this bit is set to "0".
Fast back-to-back enable	9	R	0b	Fast back-to-back access is not supported.
Reserved	15 : 10	R	000000b	Reserved

Table 3-14. Status Register

Field	bit	Read/ Write	Value	Comment	
Reserved	3:0	R	0000b	Reserved	
Capabilities List	4	R	1b	Supports Power Management	
66 MHz capable	5	R	0b	33-MHz operation	
Reserved	6	R	0b	Reserved	
Fast back-to-back capable	7	R	0b	Fast back-to-back access is not supported.	
Master Data Parity Error	8	R/W	This bit is	set when the following three conditions are met.	
			` '	ost controller asserted PERR0 (on a read), or ved PERR0 asserted (on a write).	
			` '	ost controller setting the bit acted as the bus master experation in which the error occurred	
			(3) The Pa	arity Error Response bit (Command register) is set.	
			This bit ca	n be cleared by setting to "1" from PCI.	
DEVSEL timing	10 : 9	R	01b	DEVSEL0 assert timing: Medium speed	
Signaled target abort	11	R/W	J	set to "1" whenever it terminates a transaction with ort. This bit can be cleared by set to "1" from PCI.	
Received target abort	12	R/W	The master set to "1" whenever its transaction is terminated with Target-abort. This bit can be cleared by set to "1" from PCI.		
Received master abort	13	R/W	The master set to "1" whenever it terminates a transaction with Master-abort. This bit can be cleared by set to "1" from PCI.		
Signaled system error	14	R/W	"1" is set to this bit when SERR0 is asserted. This bit can be cleared by set to "1" from PCI.		
Detected parity error	15	R/W	"1" is set to this bit when Address/Data parity error is detected even Parity Error response bit in Command Reg. is set to "0". This bit can be cleared by set to "1" from PCI.		

Table 3-15. Base Address Register

Field	bit	Read/ Write	Value (Default)	Comment
Memory space indicator	0	R	0b	EHCI registers are mapped to main memory space.
Туре	2:1	R	00b	Capability and Operational registers can be mapped into 32-bit addressing space.
Prefetchable	3	R	0b	Prefetch is disabled.
Base address (LSB)	7:4	R	00h	EHCI registers have a 256 byte address space.
Base address (MSB)	31 : 8	R/W	000h	Indicates the high-order 24 bits of the base address in the Operational registers.

Table 3-16. Power Management Capabilities (PMC) Register

Field	bit	Read/ Write	Value (Default)	Comment
Version	2:0	R	010b	PCI Power Management Interface Specification release 1.1
PME Clock	3	R	0b	PCLK is not required for PME0 assertion.
Reserved	4	R	0b	Reserved
DSI	5	R	0b	Does not required Specific Initialization before the generic class device driver is able to use it.
Aux_Current	8:6	R (/W)	000b	Indicates current requirement
				If PME0 generation from D3cold is not supported by this host controller core, this field must return a value of "000b" when read If PME0 generation from D3cold is supported by this host controller core, following assignments apply: Bit 3.3Vaux 8 7 6 Max. Current Required 1 1 1 375 mA 1 1 0 320 mA 1 0 1 270 mA 1 0 0 220 mA 0 1 1 160 mA 0 1 0 100 mA 0 0 1 55 mA 0 0 0 (self powerd)
D1_support	9	R	1b	Support D1 Power Management State
D2_support	10	R	1b	Support D2 Power Management State
PME_support	15	R (/W)	0b	Indicates whether D3cold is supported or not.
	14 : 11	R	1111b	PME0 can be asserted from D0, D1, D2, D3hot.

Remark The register marked as "(/W)" in the above table can be written by BIOS when id_write_enable bit is set to "1". On the other, the value of these registers can be loaded from external serial ROM with I²C I/F before starting PCI configuration registers access if serial ROM is available.

Table 3-17. Power Management Control/Status (PMCSR) Register

Field	bit	Read/ Write	Value (Default)	Comment
Power State	1:0	R/W	00b	Shows power state of a host controller core and sets the host controller core into a new power state.
				00b: D0 01b: D1 10b: D2 11b: D3 _{hot}
Reserved	7:2	R	00h	Reserved
PME_En	8	R/W	0b	Enable to assert PME0.
				PME0 assertion disable PME0 assertion enable
				This bit default to "0" if the host controller core does not support PME0 generation from D3cold.
				If the host controller core supports PME0 generation from D3cold, then this bit is sticky and must be explicitly cleared by the OS each time it is initially loaded.
Data_Select	12:9	R	0000b	Data register is not implemented.
Data_Scale	14 : 13	R	00b	Data register is not implemented.
PME_Status	15	R/W	0b	PME_Status is set to "1" when event, which is allowed by PORTSC Reg. in EHCI, is occurred even PME_En bit is set to "0". This bit can be cleared by set to "1" from PCI.
				This bit default to "0" if the host controller core does not support PME0 generation from D3cold.
				If the host controller core supports PME0 generation from D3cold, then this bit is sticky and must be explicitly cleared by the OS each time it is initially loaded.

Remark When Power State is not "D0", the function assumes that it is in Global Suspend and internal clock is stopped.

Table 3-18. EXT1 Register

Field	bit	Read/ Write	Value (Default)	Comment
Port_no	1:0	R/W	3h	Configures valid port number. Value Active ports 3h Port 1, 2, and 3 2h Port 1 and 2 1h Port 1 Prohibited setting the value except for above mentioned.
Ppent	2	R/W	1b	Set PPC bit in HCSPARAMS reg. 0: PPC is set to "0". HC does not have the port power control switches. And then, port power is always active. 1: PPC is set to "1". HC has the port power control switches. If port power is always active, this bit should be set to "0" and NPS bit in OHCI's HcRhDescriptorA reg. should be set to "1".
NEC private #1	3	R/W	1b	Prohibited setting to "0".
NEC private #2	4	R/W	1b	Prohibited setting to "0".
NEC private #3	5	R/W	0b	Prohibited setting to "1".
NEC private #4	6	R/W	0b	Prohibited setting to "1".
ID_write_enable	7	R/W	0b	Write protection of Subsystem ID and Subsystem Vendor ID, Min_Gnt, Max_Lat, and PME_support. 0: Write Mask 1: Write Enable
NEC private #5	11:8	R/W	3h	Prohibited setting the value except for "3h".
NEC private #6	12	R/W	1b	Prohibited setting to "0".
Hyper-Speed transfer control #1	13	R/W (R)	0b (1b)	Hyper-Speed transfer mode selects for bulk/control OUT transfer. 1: Enabled. 0: Disabled. Compatible with μPD720101. The setting of this bit is valid only when HSMODE pin is low level.
NEC private #7	18-14	R/W	10h	Prohibited setting the value except for "10h".
Hyper-Speed transfer control #2	23-19	R/W	02h	Hyper-Speed transfer mode selects for bulk/control IN transfer. 02 - 03h: High 04 – 0Fh: Medium 10h: Disabled. Compatible with μPD720101.
Potpgt	31 : 24	R/W	01h	Set the value of POTPGT in OHCl's HcRhDescriptorA reg.

- **Remarks 1.** The value of these registers except for ID_write_enable bit can be loaded from external serial ROM with I²C I/F before starting PCI configuration registers access if serial ROM is available.
 - 2. This register equals to EXT1 register which is indicated in EHCl configuration space. So, this register can be accessed by offset address E0h of EHCl configuration register.
 - 3. The registers marked as "(R)" and "(#value)" in the above table are set by HSMODE pin.

<R>

Table 3-19. EXT2 Register

	Field	bit	Read/ Write	Value (Default)	Comment
	Reserved	0	R	0b	Reserved
<r></r>	Hyper-Speed transfer control #3	1	R/W (R)	0b (1b)	 Hyper-Speed transfer mode selects for bulk/control IN/OUT transfer. 1: Enabled. 0: Disabled. Compatible with μPD720101. The setting of this bit is valid only when HSMODE
					pin is low level.
	NEC private #8	2	R/W	0b	Prohibited setting to "1".
	Reserved	5:3	R	0h	Reserved
	NEC private #9	6	R	1b	Fixed value
	NEC private #10	7	R/W	0b	Prohibited setting to "1".
	NEC private #11	15 : 8	R/W	6Ch	Prohibited setting the value except for "6Ch".
	Reserved	31 : 16	R	000h	Reserved

Remarks 1. This register equals to EXT2 register which indicated in OHCI configuration space. So, this register bit can be accessed by offset address Eh4 of OHCI configuration register.

2. The register marked as "(R)" and "(#value)" in the above table is set by HSMODE pin.

3.2 OHCI Operational Registers

The OHCI Host controller includes the Operational Registers, which are the starting point for communication with the host CPU. The PCI Configuration Space's Base Address (BAR_OHCI) Register in OHCI Host Controllers indicates the base address of Operational Registers. This set of registers is mapped to a 4-Kbyte range in the 4-Gbyte main memory space, where it is used by the HCD (Host Controller Driver). All of the registers should be read and written as Dwords. For more detail description, see the **Open HCI Specification Release 1.0a**.

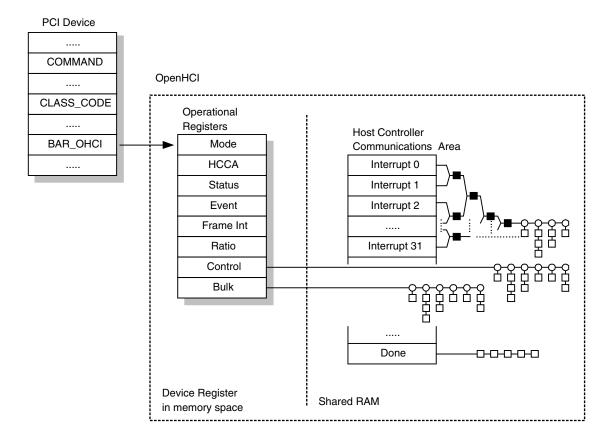


Figure 3-1. OpenHCI's PCI Configuration Space

3.2.1 Mapping of operational registers for OHCI host controller

Table 3-20. Operational Registers for OHCI Host Controller

31 0	Offset
HcRevision	00h
HcControl	04h
HcCommandStatus	08h
HcInterruptStatus	0Ch
HcInterruptEnable	10h
HcInterruptDisable	14h
HcHCCA	18h
HcPeriodCurrentED	1Ch
HcControlHeadED	20h
HcControlCurrentED	24h
HcBulkHeadED	28h
HcBulkCurrentED	2Ch
HcDoneHead	30h
HcFmInterval	34h
HcFmRemaining	38h
HcFmNumber	3Ch
HcPeriodicStart	40h
HcLSThreshold	44h
HcRhDescriptorA	48h
HcRhDescriptorB	4Ch
HcRhStatus	50h
HcRhPortStatus1	54h
HcRhPortStatus2	58h
HcRhPortStatus3	5Ch

3.2.2 Overview of OHCI operational registers

Register: HcRevision Offset Address: 00h

Field	Bit	Read	Read/Write		Comment
		HCD	НС	(Default)	
Revision	7:0	R	R	10h	Complies with OpenHCI R1.0
Reserved	31 : 8	R	R	0h	Reserved

Register: HcControl Offset Address: 04h

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
ControlBulkServiceRatio (CBSR)	1:0	R/W	R	00b	Indicates the service ratio between Control and Bulk EDs.
					CBSR No. of Control EDs over Bulk EDs served 00b 1:1 01b 2:1 10b 3:1 11b 4:1
PeriodicListEnable (PLE)	2	R/W	R	0b	Sets the next frame's periodic list servicing as valid or invalid. 1: Valid, 0: Invalid
IsochronousEnable (IE)	3	R/W	R	0b	Sets the next frame's isochronous ED servicing as valid or invalid.
					1: Valid, 0: Invalid
ControlListEnable (CLE)	4	R/W	R	0b	Sets the next frame's control list servicing as valid or invalid.
					1: Valid, 0: Invalid
BulkListEnable (BLE)	5	R/W	R	0b	Sets the next frame's bulk list servicing as valid or invalid.
					1: Valid, 0: Invalid
HostControllerFunctional StateforUSB (HCFS)	7:6	R/W	R/W	00b (H/W_R) 11b (S/W_R)	00b: USBRESET 01b: USBRESUME 10b: USBOPERATIONAL 11b: USBSUSPEND
InterruptRouting (IR) ^{Note}	8	R/W	R	0b	This bit determines the routing of interrupts generated by events registered in HcInterruptStatus.
					1: SMI0 output, 0: INTA0 output
RemoteWakeup Connected (RWC) ^{Note}	9	R/W	R/W	0b	This bit indicates whether HC support remote wakeup signaling. If remote wakeup is supported and used by system, it will be the responsibility of system firmware to set this bit during POST.
RemoteWakeupEnable (RWE)	10	R/W	R	0b	This bit control PME0 assertion. If this bit is set to "high", when ResumeDetected bit is set, PME0 will be asserted.
	04	_	-	0:	1: PME0 enable, 0: PME0 disable
Reserved	31 : 11	R	R	0h	Reserved

Note Only Hardware Reset is available.

Remarks 1. H/W_R = Hardware Reset

2. S/W_R = Software Reset

Register: HcCommandStatus Offset Address: 08h

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
HostControllerReset (HCR)	0	R/W	R/W	0b	HC software reset. This bit is set by the HCD and cleared by the HC.
ControlListFilled (CLF)	1	R/W	R/W	0b	Indicates whether any TDs exist on the control list or not.
BulkListFilled (BLF)	2	R/W	R/W	0b	Indicates whether any TDs exist on the bulk list or not.
OwnershipChangeRequest (OCR)	3	R/W	R/W	0b	This bit is set by the HCD to request a change of control of the HC.
Reserved	15 : 4	R	R	0h	Reserved
SchedulingOverrunCount (SOC)	17 : 16	R	R/W	00b	These bits are incremented on each scheduling overrun error. It is initialized to 00b and wraps around at 11b.
Reserved	31 : 18	R	R	0h	Reserved

Register: HcInterruptStatus Offset Address: 0Ch

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
SchedulingOverrun (SO)	0	R/W	R/W	0b	This bit is set when the USB schedule for the current frame overruns.
WritebackDoneHead (WDH)	1	R/W	R/W	Ob	This bit is set when HC has written HcDoneHead to HccaDoneHead. The HCD should only clear this bit after it has saved the contents of HccaDoneHead.
StartofFrame (SF)	2	R/W	R/W	0b	This bit is set at each start of a frame.
ResumeDetected (RD)	3	R/W	R/W	Ob	This bit is set when a resume signal has been detected. This bit is not set when HCD sets the USBRESUME state.
UnrecoverableError (UE)	4	R/W	R/W	0b	This bit is set when a system error that is not related to USB has been detected.
FrameNumberOverflow (FNO)	5	R/W	R/W	0b	This bit is set when the MSb (bit 15) of HcFmNumber has changed its value, from "0" to "1" or from "1" to "0".
RootHubStatusChange (RHSC)	6	R/W	R/W	0b	This bit is set when the content of either HcRhStatus or HcRhPortStatusX has changed.
Reserved	29 : 7	R	R	0h	Reserved
OwnershipChange (OC)	30	R/W	R/W	0b	This bit is set by the HC when the HCD has set the OCR field in the HcCommandStatus register. If this event is not masked, it immediately generates a system management interrupt (SMI0) even if IR bit is set to "0".
Other	31	R	R	0b	

Remark HCD will clear specific bits in this register by writing "1" to bit positions to be cleared.

Register: HcInterruptEnable Offset Address: 10h

Field	Bit	Read	Read/Write		Comment
		HCD	HC	(Default)	
SO	0	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Scheduling Overrun
WDH	1	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Writeback HcDoneHead
SF	2	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Start of Frame
RD	3	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Resume Detect
UE	4	R/W	R	0b	0: Ignore
					Interrupt is triggered by Unrecoverable Error
FNO	5	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Frame Number Overflow
RHSC	6	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Root Hub Status Change
Reserved	29:7	R	R	0h	Reserved
OC	30	R/W	R	0b	0: Ignore
					1: Interrupt is triggered by Ownership Change
Master Interrupt Enable (MIE)	31	R/W	R	0b	0: Ignore
					Interrupt triggering is enabled when an event other than those listed above occurs.

Register: HcInterruptDisable Offset Address: 14h

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
SO	0	R/W	R	0b	0: Ignore
					1: Interrupt is not triggered by Scheduling Overrun
WDH	1	R/W	R	0b	0: Ignore
					Interrupt is not triggered by Writeback HcDoneHead
SF	2	R/W	R	0b	0: Ignore
					1: Interrupt is not triggered by Start of Frame
RD	3	R/W	R	0b	0: Ignore
					Interrupt is not triggered by Resume Detect
UE	4	R/W	R	0b	0: Ignore
					1: Interrupt is not triggered by Unrecoverable Error
FNO	5	R/W	R	0b	0: Ignore
					Interrupt is not triggered by Frame Number Overflow
RHSC	6	R/W	R	0b	0: Ignore
					Interrupt is not triggered by Root Hub Status Change
Reserved	29 : 7	R	R	0h	Reserved
OC	30	R/W	R	0b	0: Ignore
					1: Interrupt is not triggered by Ownership Change
Master Interrupt Enable (MIE)	31	R/W	R	0b	0: Ignore
					Interrupt triggering is disabled when an event other than those listed above occurs.

Register: HcHCCA Offset Address: 18h

Field	Bit	Read/Write		Value	Comment
		HCD	НС	(Default)	
Host Controller Communication	7:0	R	R	00h	This is the base address of the Host Controller
Area (HCCA)	31 : 8	R/W	R	0h	Communication Area. Since it is allocated in 256- byte boundary, the bits 0 through 7are fixed at "0".

Register: HcPeriodCurrentED Offset Address: 1Ch

Field	Bit	Read	/Write		Comment
		HCD	HC	(Default)	
PeriodCurrentED (PCED)	3:0	R	R	00h	This is the physical address of the current
	31 : 4	R	R/W	0h	Isochronous or Interrupt ED in the periodic list being serviced during the current frame. Since the ED is allocated in 16-byte boundary, bits 0 through 4 are fixed at "0".

Register: HcControlHeadED Offset Address: 20h

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
ControlHeadED (CHED)	3:0	R	R	00h	This is the physical address of the first ED of the
	31 : 4	R/W	R	0h	control list. In case of setting this pointer to Null, it must wait 1 frame after ControlListEnable is cleared.

Register: HcControlCurrentED Offset Address: 24h

Field	Bit	Read/Write		Value	Comment
		HCD	HC	(Default)	
ControlCurrentED (CCED)	3:0	R	R	00h	This is the physical address of the current ED of the
	31 : 4	R/W	R/W	0h	control list.

Register: HcBulkHeadED Offset Address: 28h

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
BulkHeadED (BHED)	3:0	R	R	00h	This is the physical address of the first ED of the bulk
	31 : 4	R/W	R	0h	list. In case of setting this pointer to Null, it must wait 1 frame after BulkListEnable is cleared.

Register: HcBulkCurrentED Offset Address: 2Ch

Field	Bit	Read/Write		Value	Comment	
		HCD	HC	(Default)		
BulkCurrentED (BCED)	3:0	R	R	00h	This is the physical address of the current ED of the	
	31 : 4	R/W	R/W	0h	bulk list.	

Register: HcDoneHead Offset Address: 30h

Field	Bit	Read/Write		Value	Comment	
		HCD	НС	(Default)		
DoneHead (DH)	3:0	R	R	00h	This is the physical address of the last completed TD	
	31 : 4	R	R/W	0h	to be added to the Done queue.	

Register: HcFmInterval Offset Address: 34h

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
FrameInterval (FI)	13:0	R/W	R	2EDFh	This bit indicates a bit time value between two consecutive SOFs.
Reserved	15 : 14	R	R	0h	Reserved
FSLargestDataPacket (FSMPS)	30 : 16	R/W	R	0000h	This is the maximum number of data bits that can be sent or received in one transaction.
FrameIntervalToggle (FIT)	31	R/W	R	0b	This is inverted when loading new value to FI.

Register: HcFmRemaining Offset Address: 38h

Field	Bit	Read/Write		Value	Comment
		HCD	НС	(Default)	
FrameRemaining (FR)	13:0	R	R/W	2EDFh	This is a 14-bit down counter which indicates the remaining bit time in the current frame.
Reserved	30 : 14	R	R	0h	Reserved
FrameRemainingToggle (FRT)	31	R R/W		0b	When the value of FR becomes "0", a value is loaded from the FIT field of the HcFmInterval register.

Register: HcFmNumber Offset Address: 3Ch

Field	Bit	Read/Write		Value	Comment
		HCD	НС	(Default)	
FrameNumber (FN)	15:0	R	R/W	0h	This is a 16-bit counter that is incremented when HcFmRemaining is reloaded.
Reserved	31 : 16	R	R	0h	Reserved

Register: HcPeriodicStart Offset Address: 40h

Field	Bit	Read/Write		Value	Comment
		HCD	НС	(Default)	
PeriodicStart (PS)	13:0	R/W	R	0h	This indicates the earliest time when periodic list servicing should be started.
Reserved	31 : 14	R	R	0h	Reserved

Register: HcLSThreshold Offset Address: 44h

Field	Bit	Read/Write		Value	Comment
		HCD	HC	(Default)	
LSThreshold (LST)	11:0	R/W	R	0628h	This includes a value that is used to determine whether or not to send the LS packet before the EOF.
Reserved	31 : 12	R	R	0h	Reserved

Register: HcRhDescriptorA Offset Address: 48h

Field	Bit	Read	/Write	Value	Comment	
		HCD	НС	(Default)		
NumberDownstreamPorts (NDP) ^{Note 1}	7:0	R	R	Note2	These bits indicate the number of downstream ports supported by the root hub.	
PowerSwitchingMode (PSM) ^{Note 1}	8	R/W	R	1b	O: Power supply is applied to all ports at the same time. 1: Power supply is applied separately to each port.	
NoPowerSwitching (NPS) Note 1	9	R/W	R	Ob	O: Power supply to ports can be switched on and control of the supply to ports is always applied when His powered on.	
DeviceType (DT) ^{Note 1}	10	R	R	0b	Indicates that the root hub is not a compound device.	
OverCurrentProtection Mode (OCPM) ^{Note 1}	11	R/W	R	1b	O: Overcurrent status is reported for all downstream ports at once. 1: Overcurrent status is reported separately for each port.	
NoOverCurrentProtection (NOCP) ^{Note 1}	12	R/W	R	0b	O: Overcurrent status is reported. Overcurrent protection is not supported.	
Reserved	23 : 13	R	R	0h	Reserved	
PowerOnToPowerGood Time (POTPGT) ^{Note 1}	31 : 24	R/W	R	01h	These bits indicate the amount of time that the HCD must wait before accessing the root hub port to which a power supply is applied.	

Notes 1. These fields can only be reset by hardware reset.

2. These bits are set by the value of Port_no field in PCI configuration's EXT1 register as wing table.

Table 3-21. Port_no Field vs NDP Field

Port_no	NDP
3	3h
2	2h
1	1h

Register: HcRhDescriptorB Offset Address: 4Ch

Field	Bit	Read	/Write	Value	Comment
		HCD	НС	(Default)	
DeviceRemovable (DR) Note 1	3:0	R/W	R	Note 2, 3	Each bit is dedicated to a port of the root hub. When cleared, the attached deice is removal. When set, the attached device is not removal. bit0: Reserved bit1: Device is connected to Port#1 bit2: Device is connected to Port#2 bit3: Device is connected to Port#3
Reserved	15 : 4	R	R	0h	Reserved
PortPowerControlMask (PPCM) Note 1	19:16	R/W	R	Note 3	Each bit indicates if a port is affected by a global power control command when PSM is set. When set, the port's power state is only affected by per-port power control(SPP/CPP). When cleared, the port is controlled by the global power switch(SGP/CGP). If the device is configured to global switching mode (PSM=0), this field is not valid. bit0: Reserved bit1: Ganged-power mask on Port#1 bit2: Ganged-power mask on Port#2 bit3: Ganged-power mask on Port#3
Reserved	31 : 20	R	R	0h	Reserved

- Notes 1. These fields can only be reset by hardware reset.
 - 2. These bits should be set to 0000b to support EHCI host controller.
 - 3. These bits are set by the value of Port_no field in PCI configuration's EXT1 register as following table.

Table 3-22. Port_no Field vs DR and PPCM Field

Port	OHCI								
_no	bit19	bit18	bit17	bit16	bit3	bit2	bit1	bit0	
3		PPCN	/I (Eh)		DR (0h)				
2	R	Р	PCM (6I	า)	R		DR (0h)		
1	F	3	PPCN	/I (2h)	F	٦	DR	(0h)	

The numbers in () represent the default value for each field. "R" indicates "reserved" field. Reserved bit is read-only bit and it is set to zero.

Register: HcRhStatus Offset Address: 50h

Field	Bit	Read	/Write	Value	Comment
		HCD	HC	(Default)	
LocalPowerStatus (LPS) Note	0	R/W	R	0b	(read) LocalPowerStatus
					The root hub does not support local power status.
					 (write) ClearGlobalPower 1: Power supply to all ports is off when PSM = 0. When PSM = 1, only PPS is cleared for ports whose PPCM has not been set. 0: No change
OverCurrentIndicator (OCI) ^{Note}	1	R	R/W	0b	This bit indicates over-current condition when over- current status is reported to all downstream ports at once.
					Over-current status exists Normal power supply operations
					Be sure that this is set to "0" when over-current status is reported for each port.
Reserved	14 : 2	R	R	0h	Reserved
DeviceRemoteWakeup	15	R/W	R	0b	(read) DeviceRemoteWakeupEnable
Enable (DRWE) Note					CSC is not a remote wakeup event CSC is a remote wakeup event
					(write) SetRemoteWakeupEnable
					1: Sets DRWE 0: No change
LocalPowerStatusChange	16	R/W	R	0b	(read) LocalPowerStatusChange
(LPSC) Note					The root hub does not support local power status.
					 (write) SetGlobalPower 1: Power supply to all ports is on when PSM = 0. When PSM = 1, only PPS is set for ports whose PPCM has not been set. 0: No change
OverCurrentIndicator Change (OCIC) Note	17	R/W	R/W	Ob	HC sets "1" when a change has occurred in OCI. It is cleared when the HCD writes "1". There is no change when the HCD writes "0".
Reserved	30 : 18	R	R	0h	Reserved
ClearRemoteWakeup Enable (CRWE) Note	31	W	R	0b	1: Clears DRWE 0: No change

Register: HcRhPortStatus [1:3] Offset Address: 54h, 58h, 5Ch

These registers are set by the value of Port_no field in PCI configuration's EXT1 register as following table. When the invalid register is read, it returns FFFFFFFh.

Table 3-23. Port No Field vs HcRhPortStatus[1:3]

Port_no		OHCI	
	HcRhPortStatus1	HcRhPortStatus2	HcRhPortStatus3
3	Valid	Valid	Valid
2	Valid	Valid	Invalid
1	Valid	Invalid	Invalid

(1/4)

Field	Bit	Read/Write		Value	Comment
		HCD	НС	(Default)	
CurrentConnectStatus	0	R/W	R/W	0b	(read) CurrentConnectStatus
(CCS) ^{Note}					This bit reflects the current state of the downstream port.
					no device connected device connected
					(write) ClearPortEnable
					The HCD writes a '1' to this bit to clear the PES bit. Writing a '0' has no effect. The CCS is not affected by any write.
					Note: This bit is always read '1b' when the attached device is non-removable.
PortEnableStatus (PES) Note	1	R/W	R/W	0b	(read) PortEnableStatus
					This bit indicates whether the port is enabled or disabled. The Root Hub may clear this bit when an overcurrent condition, disconnect event, switched-off power, or operational bus error such as babble is detected. This change also causes PESC to be set. HCD clears it by writing CPE. This bit cannot be set when CCS is cleared. This bit is also set, if not already, at the completion of a port reset when RSC is set or port suspend when SSC is set.
					port is disabled port is enabled
					(write) SetPortEnable
					The HCD writes '1' to this bit to set PES bit. Writing a '0' has no effect. If CCS is cleared, this write does not set PES, but instead sets CSC. This informs the driver that it attempted to enable a disconnected port.

(2/4)

Field	Bit	Read	/Write	Value	Comment (2/4
		HCD	НС	(Default)	
PortSuspendStatus (PSS) Note	2	R/W	R/W	0b	(read) PortSuspendStatus
					This bit indicates the port is suspended or in the resume sequence. It is set by a SPS write and cleared when PSSC is set at the end of the resume interval. This bit cannot be set if CCS is cleared. This bit is also cleared when PRSC is set at the end of the port reset or when the HC is placed in the USBRESUME state. If an upstream resume is in progress, it should propagate to the HC.
					port is not suspended port is suspended
					(write) SetPortSuspend
					The HCD sets the PSS bit by writing a '1' to this bit. Writing a '0' has no effect. If CCS is cleared, this write does not set PSS; instead it sets CSC. This informs the driver that it attempted to suspend a disconnected port.
PortOverCurrentIndicator	3	R/W	R/W	0b	(read) PortOverCurrentIndicator
(POCI) Note					This bit is only valid when the Root Hub is configured in such a way that over-current conditions are reported on a per-port basis. If per-port over-current reporting is not supported, this bit is set to 0. If cleared, all power operations are normal for this port. If set, an over-current condition exists on this port. This bit always reflects the over-current input signal
					no over-current condition. ver-current condition detected.
					(write) ClearSuspendStatus
					The HCD writes a '1' to initiate a resume. Writing a '0' has no effect. A resume is initiated only if PSS is set.
PortResetStatus (PRS) Note	4	R/W	R/W	0b	(read) PortResetStatus
					When this bit is set by a write to SPR, port reset signaling is asserted. When reset is completed, this bit is cleared when PRSC is set. This bit cannot be set if CCS is cleared.
					port reset signal is not active port reset signal is active
					(write) SetPortReset
					The HCD sets the port reset signaling by writing a '1' to this bit. Writing a '0' has no effect. If CCS is cleared, this write does not set PRS, but instead sets CSC. This informs the driver that it attempted to reset a disconnected port.
Reserved	7:5	R	R	0h	Reserved

(3/4)

Field	Bit	Read/Write		Value	Comment
		HCD	НС	(Default)	
PortPowerStatus (PPS) ^{Note}	8	R/W	R/W	0b	(read) PortPowerStatus
					This bit reflects the port's power status, regardless of the type of power switching implemented. This bit is cleared if an over-current condition is detected. HCD sets this bit by writing SPP or SGP. HCD clears this bit by writing CPP or CGP. Which power control switches are enabled is determined by PSM and PPCM. In global switching mode (PSM = 0), only SGP/CGP controls this bit. In per-port power switching (PSM = 1), if the PPCM bit for the port is set, only SPP/CPP commands are enabled. If the mask is not set, only SGP/CGP commands are enabled. When this bit is cleared, CCS, PES, PSS, PRS, and LSDA will be reset to '0' within 300 ns.
					or port power is off port power is on
					(write) SetPortPower
					The HCD writes a '1' to set the PPS bit. Writing a '0' has no effect.
					Note: This bit is always reads '1b' if power switching is not supported.
LowSpeedDeviceAttached	9	R/W	R/W	0b	(read) LowSpeedDeviceAttached
(LSDA) Note					This bit indicates the speed of the device attached to this port. When set, a Low Speed device is attached to this port. When clear, a Full Speed device is attached to this port. This field is valid only when the CCS is set.
					O: full speed device attached I: low speed device attached
					(write) ClearPortPower
					The HCD clears the PPS bit by writing a '1' to this bit. Writing a '0' has no effect.
Reserved	15 : 10	R	R	0h	Reserved
ConnectStatusChange (CSC) Note	16	R/W	R/W	Ob	This bit is set whenever a connect or disconnect event occurs. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. If CCS is cleared when a SPR, SPE, or SPS write occurs, this bit is set to force the driver to re-evaluate the connection status since these writes should not occur if the port is disconnected.
					0: no change in CCS 1: change in CCS
					Note: If the DR bit is set, this bit is set only after a Root Hub reset to inform the system that the device is attached.

(4/4)

Field	Bit	Read	/Write	Value	Comment (4/4
		HCD	НС	(Default)	
PortEnableStatusChange (PESC) Note	17	R/W	R/W	0b	This bit is set when hardware events cause the PES bit to be cleared. Changes from HCD writes do not set this bit. The HCD writes a '1' to clear this bit. Writing a '0' has no effect.
					0: no change in PES 1: change in PES
PortSuspendStatusChange (PSSC) ^{Note}	18	R/W	R/W	0b	This bit is set when the full resume sequence has been completed. This sequence includes the 20-ms resume pulse, LS EOP, and 3-ms resychronization delay. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. This bit is also cleared when PRSC is set.
					resume is not completed resume completed
PortOverCurrentIndicator Change (OCIC) Note	19	R/W	R/W	0b	This bit is valid only if over-current conditions are reported on a per-port basis. This bit is set when Root Hub changes the POCI bit. The HCD writes a '1' to clear this bit. Writing a '0' has no effect.
					0: no change in POCI 1: POCI has changed
PortResetStatusChange (PRSC) ^{Note}	20	R/W	R/W	0b	This bit is set at the end of the 10-ms port reset signal. The HCD writes a '1' to clear this bit. Writing a '0' has no effect.
					port reset is not completed port reset is completed
Reserved	31 : 21	R	R	0h	Reserved

3.3 EHCl Capability and Operational Registers

The EHCI Host controller includes a set of read only Capability Registers and a set of read/write Operational Registers, which are the starting point for communication with the host CPU. The PCI Configuration Space's Base Address Register in EHCI Host Controller indicates the base address of Capability Registers. The Operational Register base must be calculated by adding the value in the first Capabilities Register (CAPLENGTH) to the EHCI Host Controller register address space. These sets of registers are mapped to a 256 bytes range in the 4-Gbyte main memory spaces. All of the registers should be read and written as Dwords. For a more detailed description, see the **EHCI Specification Rev. 1.0**.

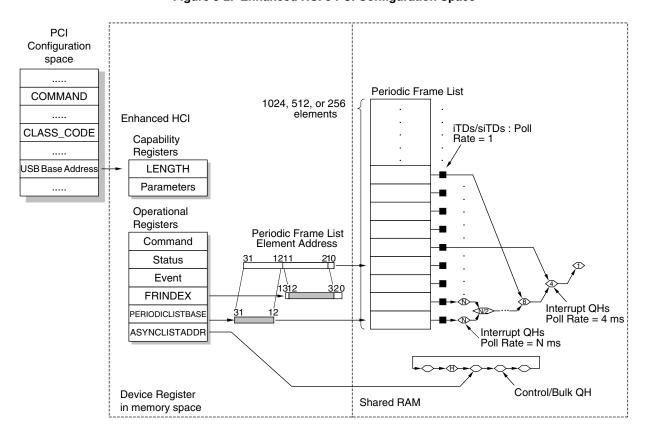


Figure 3-2. Enhanced HCI's PCI Configuration Space

3.3.1 Mapping of capability and operational registers for EHCl host controller

Table 3-24. Capability and Operational Registers for EHCl Host Controller

31	16	15	8	7	0	Offset
HCIVERSION		Reserved		CAPLENG	ГΗ	00h
HCSPARAMS						04h
HCCPARAMS						08h
HCSP_PORTROUTE						0Ch
USBCMD						20h
USBSTS						24h
USBINTR						28h
FRINDEX						2Ch
CTRLDSSEGMENT						30h
PERIODICLISTBASE						34h
ASYNCLISTADDR						38h
						3Ch
Reserved						5Fh
CONFIGFLAG						60h
PORTSC1						64h
PORTSC2						68h
PORTSC3						6Ch
Б .						78h
Reserved						 E8h
NEC private Reg. 1						ECh
NEC private Reg. 2						F0h
I2C_CMD						F4h
I2C_WND0						F8h
I2C_WND1						FCh

Remark Prohibits accessing NEC private Reg. X which are allocated to offset address ECh-F0h.

3.3.2 Overview of EHCI capability and operational registers

Register: CAPLENGTH Offset Address: 00h

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Capability Registers Length	7:0	R	20h	Offset address for the beginning of operational registers.

Register: HCIVERSION Offset Address: 02h

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Interface Version Number	15 : 0	R	10h	Complies with Enhanced HCI R1.0

Register: HCSPARAMS Offset Address: 04h

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Number of Ports (N_PORTS)	3:0	R	0011b	Indicates the number of physical downstream ports on EHCI HC. This bit is reflected by the value of port_no field in PCI configuration space's EXT1 reg.
Port Power Control (PPC)	4	R	1b	This bit is reflected by the value of <i>Ppcnt</i> bit in PCI configuration space's EXT1 reg.
				O: HC does not have the port power control switches. And then, port power is always active. 1: HC has the port power control switches.
				If port power is always active, this bit should be set to a zero by <i>Ppcnt</i> bit and NPS bit in OHCI's HcRhDescriptorA reg. should be set to a one.
Reserved	6:5	R	00b	Reserved
Port Routing Rules	7	R	1b	The port routing is explicitly enumerated by the first N_PORTS elements of the HCSP_PORTROUTE array.
Number of Ports per Companion Controller (N_PCC)	11:8	R	0011b	Indicates the number of ports supported companion OHCI host controllers. This bit is reflected by the value of port_no field in PCI configuration space's EXT1 reg. port_no N_PORTS N_PCC 3 3 3 3 2 2 2 2 1 1 1 1
Number of Companion Controller (N_CC)	15 : 12	R	0001b	Indicates the number of companion OHCI host controllers associated with EHCI HC.
Port Indicators (P_INDICATOR)	16	R	0b	HC does not support the port indicator control.
Reserved	19:17	R	0h	Reserved
Debug Port Number	23 : 20	R	0000b	HC does not support the debug port.
Reserved	31 : 24	R	0h	Reserved

Register: HCCPARAMS Offset Address: 08h

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
64-bit Addressing Capability	0	R	0b	Data structure using 32-bit address memory pointers.
Programmable Frame List Flag	1	R	1b	HCD can specify and use a smaller frame list and configure HC (EHCI) via the USBCMD register <i>Frame List Size</i> field.
Asynchronous Schedule Park Capability	2	R	1b	This bit indicates whether HC supports the park feature for high-speed queue heads in the Asynchronous schedule.
Reserved	3	R	00b	Reserved
Isochronous Scheduling Threshold	7:4	R	0000b	HC does not support to cache the isochronous data structure for an entire frame.
EHCI Extended Capabilities Pointer (EECP)	15:8	R	E8h	This optional register indicates the existence of a capabilities list and offset in PCI configuration space of the first EHCI extended capability.
Reserved	31 : 16	R	0h	Reserved

Register: HCSP_PORTROUTE Offset Address: 0Ch

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Companion Port Route	31 : 0	R	0h	All of three ports are routed to OHCI HC.

Register: USBCMD Offset Address: 20h

14	/ ^ \
	///
١.	· · - ·

Field	Bit	Read/Write	Value	Comment (1/2
		HCD	(Default)	
Run/Stop (RS)	0	R/W	0b	Stop (HC completes the current transaction on the USB and then halts.)
				1: Run (HC proceeds with execution of the schedule.)
				HC continues execution as long as this bit is set to a one. The HCHalted bit in the USBSTS register indicates when HC has finished the transaction and has entered the stopped state. HCD should not write a one unless HC is in the Halted state.
Host Controller Reset (HCRESET)	1	R/W	Ob	When HCD writes a one, HC resets its internal pipelines, state machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB reset is not driven on downstream ports.
				PCI Configuration registers are not affected by this reset. All operational registers, including port registers and port state machines are set to their initial values. Port ownership reverts to companion (OHCI) host controller(s).
				When the reset process is complete, HC sets to a zero. HCD cannot terminate the reset process early by writing a zero.
				HCD should not set this bit to a one when the HCHalted bit is a zero.
Frame List Size	3:2	R/W	00b	Specifies the size of the frame list. The FRINDEX register should be used for the Frame List Current index.
				00b: 1024 elements (4096 bytes)
				01b: 512 elements (2048 bytes)
				10b: 256 elements (1024 bytes) - for resource-constrained environments 11b: Reserved
Periodic Schedule Enable	4	R/W	0b	Controls whether HC skips processing the Periodic Schedule.
				Do not process the Periodic Schedule. Use the PERIODICLISTBASE register to access the Periodic Schedule
Asynchronous Schedule Enable	5	R/W	0b	Controls whether HC skips processing the Asynchronous Schedule.
				Do not process the Asynchronous Schedule. Use the ASYNCLISTADDR register to access the Asynchronous Schedule

(2/2)

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Interrupt on Async Advance Doorbell	6	R/W	Ob	HCD uses this bit as a doorbell to tell HC to issue an interrupt at the next interrupt threshold when it advances next queue head. HCD must write a one to ring the doorbell. When HC has evicted all appropriate cached schedule state, it sets the interrupt on Async Advance bit in the USBSTS register. HC sets to a zero after it has set the Interrupt on
	_			Async Advance bit to a one.
Light Host Controller Reset	7	R	0b	HC does not support the light HC Reset
Asynchronous Schedule Park Mode Count	9:8	RW	11b	This field counts the number of successive transactions HC can execute from one queue head.
Reserved	10	R	0h	Reserved
Asynchronous Schedule Park Mode Enable	11	RW	1b	This bit indicate Park mode enable/disable. 0 : disable 1 : enable
Reserved	15 : 12	R	0h	Reserved
Interrupt Threshold Control	23:16	R/W	08h	Indicates the maximum rate at which HC will issue interrupts. Value Maximum Interrupt Interval 00h: Reserved 01h: 1 micro-frame 02h: 2 micro-frames 04h: 4 micro-frames 08h: 8 micro-frames (1 ms) 10h: 16 micro-frames (2 ms) 20h: 32 micro-frames (4 ms) 40h: 64 micro-frames (8 ms) Any other value yields undefined result.
Reserved	31 : 24	R	0h	Reserved

Register: USBSTS Offset Address: 24h

/	4	/O)	
ı	ı	12	1

Field	Bit	Read/Write	Value	Comment (1/2
		HCD	(Default)	
USB Interrupt (USBINT)	0	R/W	Ob	HC sets it to a one when the cause of an interrupt is a completion of a USB transaction.
				HC also sets to a one when a short packet is detected (actual number of bytes received was less than the expected number of bytes).
				HCD writes a one to clear this bit. Writing a zero has no effect.
USB Error Interrupt (USBERRINT)	1	R/W	0b	HC sets it to a one when completion of a USB transaction results in an error condition (e.g. error counter underflow).
				HCD writes a one to clear this bit. Writing a zero has no effect.
Port Change Detect	2	R/W	0b	HC sets it to a one when any port for which the <i>Port Owner</i> bit in the PORTSC[n] register is set to zero is satisfied one of following conditions.
				A change bit of port transitions from a zero to a one.
				A PORTSC[n] register Force Port Resume bit of port transitions from a zero to a one as a result of a J-K transition detected on a suspended port.
				It is acceptable that on a D3 to D0 transition of the EHCI HC device, this bit is loaded with the OR of all of the PORTSC[n] register change bits (including Force Port Resume, Over-current Change, Port Enable/Disable Change, and Connect Status Change)
				HCD writes a one to clear this bit. Writing a zero has no effect.
Frame List Rollover	3	R/W	Ob	HC sets it to a one when the <i>Frame Index</i> field in the FRINDEX register rolls over from its maximum value to zero. The exact value at which the rollover occurs depends on the frame list size.
				HCD writes a one to clear this bit. Writing a zero has no effect.
Host System Error	4	R/W	Ob	HC sets it to a one when a serious error occurs during a host system access involving the HC module. In a PCI system, HC sets this bit to a one by PCI Parity error, etc. When this error occurs, the HC clears the RS bit in the USBCMD register to prevent further execution of the scheduled TDs.
				HCD writes a one to clear this bit. Writing a zero has no effect.

(2/2)

Field	Bit	Read/Write	Value	(2/2 Comment
riold	Di.	HCD	(Default)	Common
Interrupt on Async Advance	5	R/W	0b	When HC fetch QH, It will check whether Interrupt on Async Advance Doorbell bit in the USBCMD register is a one or not. If Interrupt on Async Advance Doorbell bit is a one, HC will issue this interrupt at the next interrupt threshold when HC advances next queue head. HCD writes a one to clear this bit. Writing a zero has no effect.
Reserved	11 : 6	R	0h	Reserved
HCHalted	12	R	1b	This bit is a zero whenever the RS bit in the USBCMD register is a one. HC sets to a one after it has stopped executing as a result of the RS bit being set to a zero, either by HCD or by HC hardware (e.g. internal error)
Reclamation	13	R	0b	This is used to detect an empty asynchronous schedule.
				When HC fetches Queue Head with H = 1 or after reset, HC set it to a zero. When HC executes async transaction or detects start event, HC set it to a one. If HC fetches Queue Head with H = 1 and this bit is a zero, HC transtions to Async Sched sleeping mode.
Periodic Schedule Status	14	R	0b	Reports the current real status of the Periodic Schedule.
				O: The Periodic Schedule is disabled. The Periodic Schedule is enabled.
				When this bit and the <i>Periodic Schedule Enable</i> bit in the USBCMD register are the same value, the Periodic Schedule is either enabled (1) or disabled (0).
Asynchronous Schedule Status	15	R	Ob	Reports the current real status of the Asynchronous Schedule. 0: The Asynchronous Schedule is disabled. 1: The Asynchronous Schedule is enabled. When this bit and the <i>Asynchronous Schedule Enable</i> bit in the USBCMD register are the same value, the Asynchronous Schedule is either enabled (1) or
Reserved	31 : 16	R	0h	disabled (0). Reserved
1 16361 VEU	31.10	n	UII	1 10001 VCU

Register: USBINTR Offset Address: 28h

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
USB Interrupt Enable	0	R/W	Ob	O: Ignore 1: The USBINT bit in the USBSTS register is a one, HC will issue an interrupt at the next interrupt threshold.
				The interrupt is acknowledged by HCD clearing the USBINT bit.
USB Error Interrupt Enable	1	R/W	Oh	O: Ignore 1: The USBERRINT bit in the USBSTS register is a one, HC will issue an interrupt at the next interrupt
				threshold. The interrupt is acknowledged by HCD clearing the USBERRINT bit.
Port Change Interrupt Enable	2	R/W	0b	0: Ignore
				The Port Change Detect bit in the USBSTS register is a one, HC will issue an interrupt immediately.
				The interrupt is acknowledged by HCD clearing the Port Change Defect bit.
Frame List Rollover Enable	3	R/W	0b	0: Ignore
				The Frame List Rollover bit in the USBSTS register is a one, HC will issue an interrupt immediately.
				The interrupt is acknowledged by HCD clearing the Frame List Rollover bit.
Host System Error Enable	4	R/W	0b	0: Ignore
				The Host System Error bit in the USBSTS register is a one, HC will issue an interrupt immediately.
				The interrupt is acknowledged by HCD clearing the Host System Error bit.
Interrupt on Async Advance	5	R/W	0b	0: Ignore
Enable				The Interrupt on Async Advance bit in the USBSTS register is a one, HC will issue an interrupt at the next interrupt threshold.
				The interrupt is acknowledged by HCD clearing the Interrupt on Async Advance bit.
Reserved	31 : 6	R	0h	Reserved

Register: FRINDEX Offset Address: 2Ch

Field	Bit	Read/Write HCD	Value (Default)	Comment
Frame Index	13:0	R/W	00h	The value in this register increments at the end of each micro-frame. Bits [N:3] are used for the Frame List Current index. This means that each location of the frame list is accessed 8 times before moving to the next index. Frame List Size Number Elements N 00b (1024) 12 01b (512) 11
				10b (256) 10 11b Reserved This register cannot be written unless HC is in the
				Halted state as indicated by the <i>HCHalted</i> bit. Writes to this register also effect the SOF value. The SOF frame number value for the bus SOF token is derived from this register.
Reserved	31 : 14	R	0h	Reserved

Register: CTRLDSSEGMENT Offset Address: 30h

Field	Bit	Read/Write HCD	Value (Default)	Comment
CTRLDSSEGMENT	31:0	R	00h	64-bit Addressing Capability field in HCCPARAMS register is a zero, so this register is not used. HCD cannot write to it.

Register: PERIODICLISTBASE Offset Address: 34h

Field	Bit	Read/Write HCD	Value (Default)	Comment
Reserved	11:0	R	000h	Reserved (The memory structure is assumed to be 4-Kbyte aligned.) During runtime, the values of these bits are undefined.
BaseAddress(Low)	31:12	R/W	00000h	Contains the beginning address of the Periodic Frame List in the system memory. HCD loads this register prior to starting the schedule execution by HC. The contents of this register are combined with the <i>Frame Index</i> field in the FRINDEX register to enable HC to step through the Periodic Frame List in sequence.

Register: ASYNCLISTADDR Offset Address: 38h

Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Reserved	4:0	R	0h	Reserved (The memory structure is assumed to be 32-byte aligned.) This value has no effect on operation.
Link Pointer Low(LPL)	31 : 5	R/W	0000000 h	Contains the address of the next asynchronous queue head to be executed.

Register: CONFIGFLAG Offset Address: 60h

Field	Bit	Read/Write HCD	Value (Default)	Comment
Configure Flag (CF)	0	R/W	0b	HCD sets this bit as the last action in its process of configuring the HC. This bit controls the default port-routing control logic.
				Port routing control logic default-routes each port to an implementation dependent companion (OHCI) host controller.
				Port routing control logic default-routes all ports to EHCI HC.
				When HCD clears this bit, HC clears PED, FPR, SPD, and PR bit in PORTSC within 390 ns, and sets PO bit within 300 ns.
Reserved	31 : 1	R	0h	Reserved

Remark It is only reset by hardware when the auxiliary power is initially applied or in response to a host controller reset.

Register: PORTSC [1:3] Offset Address: 64h, 68h, 6Ch

These registers are set by the value of Port_no field in PCI configuration's EXT1 register as following table. When the invalid register is read, it returns FFFFFFFh.

Port _no	EHCI								
	PORTSC1	PORTSC2	PORTSC3						
3	Valid	Valid	Valid						
2	Valid	Valid	Invalid						
1	Valid	Invalid	Invalid						

	T	1	T	(1/4)
Field	Bit	Read/Write	Value	Comment
		HCD	(Default)	
Current Connect Status	0	R	0b	This value reflects the current state of the port.
(CCS)				1: Device is present on port.
				0: No device is present.
				This field is zero if <i>PP</i> bit (bit 12) is zero.
				When HC detects disconnection condition, HC clears PED and SPD within 100 ns.
Connect Status Change (CSC)	1	R/W	0b	Indicates a change has occurred in the port's Current Connect Status bit. HC sets this bit for all changes to the port device connect status, even if HCD has not
				cleared an existing connect status change.
				Change in Current Connect Status No change
				HCD writes a one to clear this bit. Writing a zero has no effect. This field is zero if <i>PP</i> bit (bit 12) is zero.
Port Enabled/Disabled (PED)	2	R/W	Ob	Ports can only be enabled by HC as a part of the reset and enable. Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by HCD. Note that the bit status does not change until the port state actually changes.
				When the port is disabled (0b) downstream propagation of data is blocked on this port, except for reset.
				1: Enable 0: Disable
				This field is zero if PP bit (bit 12) is zero.
Port Enable/Disable Change (PEDC)	3	R/W	0b	Port Enabled/Disabled status has changed. No change.
(·)				For the root hub, this bit gets set to a one only when a port is disabled due to disconnect on the <i>port or</i> due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification).
				HCD writes a one to clear this bit. Writing a zero has no effect. This field is zero if <i>PP</i> bit (bit 12) is zero.

(2/4)

Field	Bit	Read/Write HCD	Value (Default)	Comment (2/4
Over-current Active	4	R	0b	The port currently has an over-current. The port does not have an over-current.
				When HC detects over-current condition HC clears PP bit and its related bits. This bit will automatically transit from a one to a zero when the over-current condition is removed.
Over-current Change	5	R/W	0b	Over-current Active status has changed. No change.
				HCD writes a one to clear this bit. Writing a zero has no effect.
Force Port Resume (FPR)	6	R/W	0b	Resume detected/driven on port. No resume (K-state) detected/driven on port.
				HC sets it to a one and the <i>Port Change Detect</i> bit in the USBSTS register is also set to a one if a J-to-K transition is detected while the port is in the suspend state. HCD sets it to a one to drive resume signaling. At that time, HC must not set the <i>Port Change Detect</i> bit.
				The resume signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. HCD must set this bit to a zero when the appropriate amount of time has elapsed.
				Writing a zero (from one) causes the port to return to high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to the high-speed idle.
				This field is zero if <i>PP</i> bit (bit 12) is zero.
Suspend (SPD)	7	R/W	0b	1: Port is in suspend state. 0: Port is not in suspend state.
(0)				Port Enabled/Disabled bit (bit 2) and this bit define the port states as follows.
				Port Enabled/Disabled Suspend Port State 0 X Disable 1 0 Enable 1 1 Suspend
				When in suspend state downstream propagation of data is blocked on this port, except for port reset. The blocking and bit status change occurs at the end of the current transaction, if a transaction was in progress when this bit was written to a one.
				HC will unconditionally set to a zero when: HCD sets the Force Port Resume bit (bit 6) to a zero. HCD sets the Port Reset bit (bit 8) to a one.
				This field is zero if PP bit (bit 12) is zero.

(3/4)

Field	Bit	Read/Write	Value	Comment (3/4)
		HCD	(Default)	
Port Reset (PR)	8	R/W	0b	1: Port is in Reset. 0: Port is not in Reset.
				When HCD writes a one to this bit (from a zero), the bus reset sequence as defined in the USB Specification Revision 2 0 is started. HCD writes a zero to this bit to terminate the bus reset sequence. HCD must keep this bit a one long enough to ensure the reset sequence, as specified in the USB Specification Revision 2 0, completes. HCD should not attempt to reset a port if the HCHalted bit in the USBSTS register is a one.
Reserved	9	R	0b	Reserved
Line Status	11:10	R	00b	These bits reflect the current logical levels of the D+ (bit 11) and D- (bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to the port reset and enable sequence. This field is valid only when the port enable bit is zero and the current connect status bit is set to a one. The encoding of the bits are: Bits[11:10] USB State Interpretation 00b SEO Not Low-speed device, perform EHCI reset 10b J-state Not Low-speed device, perform EHCI reset 01b K-state Low-speed device, release ownership of port 11b Undefined Not Low-speed device, perform EHCI reset. This value of this field is undefined if <i>Port Power</i> is zero.
Port Power (PP)	12	R/W	Ob	The function of this bit depends on the value of the Port Power Control (PPC) field in the HCSPARAMS register. The behavior is as follows: PPC PP Operation 0b 1b HC does not have port power control switches. Each port is hard-wired to power. 1b 1b/0b HC has port power control switches. This bit represents the current setting of the switch (0 = off, 1 = on). When power is not available on a port (i.e. PP equals a 0), the port is nonfunctional and will not report attaches, detaches, etc. When an over current condition is detected on a powered port and PPC is a one, the PP bit in each affected port may be transitioned by HC from a one to a zero (removing power from the port). When HCD clears this bit or HC detects over-current condition, HC also clears the following bits within 300 ns. CCS, CSC, PED, PEDC, FPR, SPD, PR, WKCNNT_E, WKDSCNNT_E, WKOC_E

(4/4)

Field	Bit	Read/Write	Value (Default)	Comment
Port Owner	13	R/W	1b	This bit unconditionally goes to a zero when the Configured Flag bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to a one whenever the Configured Flag bit is zero. HCD uses this field to release ownership of the port to a selected HC. HCD writes a one to this bit when the attached device is not a high-speed device. When HCD sets this bit, HC clears the following bits within 300 ns. PED, FPR, SPD, PR
Port Indicator Control	15 : 14	R	00b	The <i>P_INDICATOR</i> bit in the HCSPARAMS register is a zero. So, writing to this bit has no effect.
Port Test Control	19:16	R/W	0000b	When this field is zero, the port is NOT operating in a test mode. The encoding of the test mode bits are (0110b -1111b are reserved) Bits Test Mode 0000b Test mode not enabled 0001b Test J_STATE 0010b Test K_STATE 0011b Test SE0_NAK 0100b Test Packet 0101b Test FORCE_ENABLE Refer to USB Specification Revision 2 0, Chapter 7 for details on each test mode.
Wake on Connect Enable (WKCNNT_E)	20	R/W	Ob	Writing this bit to a one enables the port to be sensitive to device connects as wake-up events. This bit does not affect operation when HC is running. This field is zero if <i>PP</i> bit (bit 12) is zero.
Wake on Disconnect Enable (WKDSCNNT_E)	21	R/W	Ob	Writing this bit to a one enables the port to be sensitive to device disconnects as wake-up events. This bit does not affect operation when HC is running. This field is zero if <i>PP</i> bit (bit 12) is zero.
Wake on Over-current Enable (WKOC_E)	22	R/W	Ob	Writing this bit to a one enables the port to be sensitive to over-current conditions as wake-up events. This bit does not affect operation when HC is running. This field is zero if <i>PP</i> bit (bit 12) is zero.
Reserved	31 : 23	R	0h	Reserved

Remarks 1. HCD uses this information as an input parameter to determine how many ports need to be serviced.

- 2. It is only reset by hardware when the auxiliary power is initially applied or in response to a host controller reset. The initial conditions of a port are a
 - No device connected,
 - Port disabled

CHAPTER 3 REGISTER INFORMATION

Register: I2C_CMD Offset Address: F4h

Register: I2C_WND0 Offset Address: F8h

Register: I2C_WND1 Offset Address: FCh

Refer **CHAPTER 8 HOW TO WRITE EXTERNAL SERIAL ROM** for detail information about these three registers.

CHAPTER 4 OHCI HOST CONTROLLER

OpenHCI is the specifications that apply to the relation between the host controller and the HCD software. This chapter provides an OHCI host controller's communication flow and the data structure that is used. For details, see the **Open Host Controller Interface Specification Release 1.0a.**

4.1 Communication between OHCI Host Controller and HCD

The OHCI host controller (HC) and the host controller driver (HCD) communicate via the following two paths.

- · Operational registers
- Host Controller Communications Area (HCCA)

In communication that uses the operational registers which are built into the OHCI HC, the OHCI HC is the PCI target device. For details of operational registers, see section 3.2. They also include pointers that indicate the position of the HCCA (Host Controller Communications Area) within system memory. The OHCI HC becomes the PCI bus master for communications that are executed via the HCCA. The HCCA is a 256-byte system memory area that contains head pointers to the interrupt ED list, head pointers to the Done Queue, and frame-related status information. The software uses this system memory to directly control the HC's functions without reading from the HC, as long as operation conditions are normal (i.e., there are no errors). These two paths are used for handling HC control tasks and USB data transfer results.

The HCD executes communication between the HC and USB devices, based on the enqueued ED (Endpoint Descriptor) and TD (Transfer Descriptor). An ED contains information (maximum packet size, endpoint address, endpoint speed and data flow direction) that the HC requires to communicate with the endpoint, and the ED can also be used as the TD queue's anchor. The HCD generates EDs and assigns them to the various endpoints, when are then listed and linked.

A TD contains information (data toggle information, buffer positions in system memory, and complete status code) that is required for the data packet to be sent. Each TD also contains information (data buffer size ranging from 0 to 8192 bytes, with a maximum of 1023-byte transfer per data packet) that is related to at least one data packet. Enqueued TDs are serviced in FIFO order. The TD queue is linked with a certain endpoint's ED and the TDs are linked with the TD queue. The HCD generates data from this structure and passes the data to the HC for processing.

4.2 Endpoint Descriptor

An ED is always allocated in 16-byte units to system memory. When the ED list is referenced, if it contains a TD that is linked to an ED, the HC executes the transfer specified by that TD. If the HCD must change the head pointer (HeadP) value, list servicing for all EDs that have the same transfer type as the ED to be deleted must be rendered invalid so as to prevent the HC from accessing the EDs. Therefore, the HCD sets a Skip bit.

4.2.1 Endpoint descriptor format

Table 4-1. Endpoint Descriptor Format

	31 27	26	16 15	14	13	1211	10	07	06 04	03 02	201	00
Dword0	-	MPS	MPS FKSDEN F						FA			
Dword1	TD Queue Tail Pointer (TailP)									-		
Dword2	TD Queue Head Pointer (HeadP) 0 C							С	Н			
Dword3	Next Endpoint Descriptor (NextED)								-			

4.2.2 Endpoint descriptor field definitions

Table 4-2. Description of Endpoint Descriptors

(1/2)

Name	HC Access	Description				
FA	R	Function Address USB address of function that includes the endpoint that is controlled by this ED				
EN	R	Endpoint Number Endpoint address in function				
D	R	Direction Indicates the data flow direction (IN or OUT). If neither IN nor OUT are specified, the transfer direction is defined by the TD's PID (Packet ID) field.				
		Code Direction				
		00b Get direction From TD				
		01b OUT				
		10b IN				
		11b Get direction From TD				
S	R	Speed This indicates the endpoint's speed. • full-speed (S = 0) • low-speed (S = 1)				
К	R	Skip When this bit is set, the HC proceeds to the next ED without accessing the TD queue or issuing a USB token to the endpoint.				
F	R	Format This indicates the format of a TD that is linked to this ED. For control, bulk, or interrupt endpoints, if F = 0, then the General TD format is used. For isochronous endpoints, if F = 1, the Isochronous TD format is used.				

(2/2)

Name	HC Access	Description (272)
MPS	R	Maximum Packet Size This field indicates the maximum number of bytes (1023 bytes) per data packet that can be received from the endpoint or sent to an endpoint. When a write operation (OUT or SETUP) is executed from the HC to the endpoint, the size of the data packet to be sent always becomes either the Maximum Packet Size or the size of the data in the buffer, whichever is smaller. When a read operation (IN) is executed from the endpoint to the HC, the data packet size is determined according to the endpoint.
TailP	R	TD Queue Tail Pointer When TailP and HeadP have the same value, the list does not contain any TDs that can be serviced by the HC. When the TailP and HeadP values are different, the list contains TDs.
Н	R/W	Halted This bit is set by the HC to indicate when servicing of the endpoint TD queue has been suspended due to a normal TD servicing error.
С	R/W	toggle Carry This bit is the data toggle carry bit. Whenever a TD is retired, the last data toggle value (LSb in the data Toggle field) that was used by the retired TD is written. This field cannot be used by isochronous endpoints.
HeadP	R/W	TD Queue Head Pointer This indicates the next TD to be serviced at this endpoint.
NextED	R	Next ED When its value is other than zero, this bit indicates the next ED.

4.3 Transfer Descriptors

TDs (Transfer Descriptors) are used by the HC to indicate the buffer for the data that is sent to or from an endpoint. TDs are divided into two types: General TDs and Isochronous TDs. General TDs are used by interrupt, control, and bulk endpoints while Isochronous TDs are used for handling isochronous transfers.

For both General and Isochronous TDs, buffers ranging from 0 bytes to 8,192 bytes can be indicated. Also, the data buffer described by one TD can be divided into two pages. This enables the elimination of various problems, such as problems related to forced physical connection of buffers or transfer of surplus data.

When the HCD appends a TD, the TD indicated by TailP is linked to the new TD, and TailP is then changed to indicate the appended TD. Therefore, the appended TD is always added to the end of the TD queue. The HC services the TD asynchronously in relation to servicing performed by the host processor. Consequently, when it is necessary to switch from the TD queue to something else, the HC's endpoint TD queue servicing must be suspended to avoid problems from occurring due to this switch. Suspension of TD servicing is achieved when the HCD sets the Skip bit in the ED to be deleted.

4.3.1 General transfer descriptor format

General TDs are used for control, bulk, or interrupt transfers, and they must always be allocated in 16-byte units to system memory.

28 2726 2524 23 21 2019 18 17 0403 00 DP R Dword0 CC EC Т DI Dword1 Current Buffer Pointer (CBP) Dword2 Next TD (Next TD) 0 Dword3 Buffer End (BE)

Table 4-3. General TD Format

4.3.2 General transfer descriptor field definitions

The General TD's Current Buffer Pointer indicates the data buffer address used for a data packet transfer to or from an endpoint. If the transfer is completed without the occurrence of any kind of error, the HC advances the Current Buffer Pointer by exactly the number of transferred bytes. If the buffer address indicated by the Current Buffer Pointer exceeds the 4-K boundary during a data packet transfer, the high-order 20 bits of the Buffer End field is copied to the working value from the Current Buffer Pointer. The next buffer address becomes byte 0 in the same 4-K page space that is used when the final byte is retained.

Table 4-4. Description of General TD

Name	HC Access	Description						
R	R	buffer Rounding When this bit's value is "0", the data buffer defined by the last data packet sent from the endpoint specified by the TD must be a completely full buffer. When its value is "1", the data buffer defined by the last data packet is not full, even if there are no errors.						
DP	R		when 00b or 11		ken. This field only has significance in e ED's D field has delayed the PID			
		Code	PID Type	Data Direction				
		00b	SETUP	to endpoint				
		01b	OUT	to endpoint				
		10b	IN	From endpoint				
		11b	Reserved					
					_			
DI	R	the TD has been	completed, the I	HC delays the interrupt ev	n of completed TD servicing. When rent until the frame indicated by this pletion of this TD do not occur.			
Т	R/W	Data Toggle This field is used to generate a comparison or occurrence of data PID values (DATA0 or DATA1). This field is updated after each successful transfer of a data packet. When the data Toggle field's Msb is "0", the data Toggle field's Lsb, which was acquired from the ED's toggle Carry bit, is ignored. When data Toggle field's Msb is "1", the data Toggle field's LSb indicates the data toggle.						
EC	R/W	has reached "2", t	he type of error		on error occurs after the Error Count on Code field and is transferred to the Count is reset to "0".			
CC	R/W	-	uccessful. If it w		ardless of whether or not the s set as NoError. If unsuccessful, it is			
CBP	R/W	This includes the an endpoint.	Current Buffer Pointer This includes the next physical address in memory that will be accessed by a transfer from or to an endpoint. A "0" value indicates either that the data packet has zero length or that all bytes have been					
NextTD	R/W	Next TD This specifies the	next TD in the	ΓD list linked to the endpo	oint.			
BE	R	Buffer End This indicates the	physical addres	ss of the last byte in the T	D's buffer.			

4.3.3 Isochronous transfer descriptor format

Isochronous TDs are used only by isochronous endpoints. All TDs linked to the ED must use this format when F = 1. This TD is allocated to system memory in 32-byte units.

Table 4-5. Isochronous TD Format

	31	28	27 2	26 24	23 21	20	16	15	12	11	05	04		00
Dword0		CC	-	FC	DI	-					SF			
Dword1		Buffer Page 0 (BP0)												
Dword2		NextTD 0												
Dword3		Buffer End (BE)												
Dword4		Offset1/PSW1							Offset	0/PSW0				
Dword5	Offset3/PSW3								Offset	2/PSW2				
Dword6	Offset5/PSW5						Offset4/PSW4							
Dword7	Offset7/PSW7 Offset6/PSW6													

4.3.4 Isochronous transfer descriptor field definitions

Isochronous TDs have a (Frame Count + 1) frame buffer with a continuous range from 1 to 8. The first data packet is sent when the low-order 16 bits of HcFmNumber matches the Isochronous TD's Starting Frame value. If the buffer address exceeds the 4-K boundary during a data packet transfer, the high-order 20 bits of the Buffer End field is used as the physical address of the next page. Consequently, the next buffer address becomes byte 0 in the same 4-K page space that is used when the final byte is retained.

Table 4-6. Description of Isochronous TD

Name	HC Access	Description
SF	R	Starting Frame This includes the low-order 16 bits of the number of frames sent by the Isochronous TD's first data packet.
DI	R	Delay Interrupt This indicates the time until a interrupt occurs following completion of Isochronous TD servicing.
FC	R	Frame Count This is the number of data packets indicated by the Isochronous TD. When Frame Count = 0, one data packet is included and when Frame Count = 7, eight data packets are included.
CC	R/W	Condition Code This field includes a completion code when an Isochronous TD has been transferred to the Done Queue.
BP0	R	Buffer Page 0 This is the physical page number of the first byte in the data buffer used by the Isochronous TD.
NextTD	R/W	Next TD This indicates the next Isochronous TD in the Isochronous TD queue linked to an ED.
BE	R	Buffer End This includes the physical address of the buffer's last byte.
OffsetN	R	Offset This is used to determine the size and start address of an isochronous data packet.
PSWN	W	Packet Status Word This includes the size of the completion code and the received isochronous data packet.

4.3.5 Packet status word format

Table 4-7. Packet Status Word Format

15	12 11	00
СС	0	SIZE

4.3.6 Packet status word field definitions

Table 4-8. Description of Packet Status Word

Name	HC Access	Description
SIZE	R/W	Size of Packet For IN transfers, this field is written the number of bytes which are received from the endpoint. For OUT transfer, this field is written to 0.
СС	R/W	Condition Code This field indicates both completion code and the format of the word. When the Condition Code indicates NotAccessed, the data is in Offset format. Otherwise, the SIZE field contains a value that is appropriate to the direction of data flow and the completion status.

4.3.7 Completion code definitions

Table 4-9. Description of Completion Code

Code	Meaning	Description
0000	NoError	General TD or isochronous data packet processing completed with no detected errors
0001	CRC	Last data packet from endpoint contained a CRC error
0010	BitStuffing	Last data packet from endpoint contained a bit stuffing violation
0011	DataToggleMismatch	Last data packet from endpoint had data toggle PID that did not match the expected value.
0100	Stall	TD was moved to the Done Queue.
0101	DeviceNotResponding	Device did not respond to token (IN) or did not send any handshake (OUT).
0110	PIDCHECKFAILURE	PID from endpoint is failed.
0111	UNEXPECTEDPID	Received PID is undefined or invalid.
1000	DataOverrun	The amount of data returned by the endpoint exceeded either the size of the maximum data packet allowed from the endpoint or the remaining buffer size.
1001	DataUnderrun	The endpoint returned less than Maximum Packet Size and the amount was not sufficient to fill the specified buffer.
1010	Reserved	
1011	Reserved	
1100	BufferOverrun	During an IN, HC received data from endpoint faster than it could be written to system memory.
1101	BufferUnderrun	During an OUT, HC could not retrieve data from system memory fast enough to keep up with data USB data rate.
111x	NotAccessed	This code is set by software before the TD is placed on a list to be processed by the HC.

4.4 Host Controller Communications Area

The HCCA (Host Controller Communications Area) is a 256-byte area in system memory that is used by the system software for sending and receiving control/status information to and from the HC. The system software always writes the address of the area to the HC's HcHCCA field.

4.4.1 Host controller communications area format

Table 4-10. Description of Host Controller Communications Area

Offset	Size (bytes)	Name	R/W	Description
0	128	HccalnterruptTable	R	This 32-Dword entry table is a pointer to ED interrupt lists.
80h	2	HccaFrameNumber	W	This includes the current frame number. This value is updated by the HC before periodic list servicing of the frame begins.
82h	2	HccaPad1	W	When the HC updates the HccaFrameNumber value, the HC sets "0" to this word.
84h	4	HccaDoneHead	W	When the HC reaches the end of a frame and a decremented value of "0" is shown as the Delay Interrupt value, the HC writes the current HcDoneHead value to this field. At this point, interrupts occur as valid interrupts. The HC does not write again until the software clears the WD bit in the HcInterruptStatus register. If this field has a value of "0", interrupts can occur for reasons other than updating of HccaDoneHead, and the HcInterruptStatus register must be accessed to determine the cause of the interrupt. If this field's value is not "0", the interrupt is due to updating of the Done Queue. If this field's LSb is not "0", another interrupt event has also occurred. The HcInterruptStatus field must be checked to determine the cause of that interrupt.
88h	116	Reserved	R/W	This field is reserved for use by the HC.

4.4.2 Host controller communications area description

HccaInterruptTable is a 32-Dword entry table which functions as a pointer to the ED list's various interrupt lists. The more of these lists that an ED is linked to, the higher the execution rate. The execution rate is 32 ms for an ED that is in only one list, but it is 16 ms for an ED that is in two lists. An ED that is linked to all 32 lists is executed at a rate of once per frame. The last entry in each of the 32 interrupt lists must specify an isochronous list.

After an SOF (Start Of Frame) token is sent, the HC overwrites HccaFrameNumber using the FrameNumber value from HcFmNumber before it starting reading the ED to be serviced in a new frame.

CHAPTER 5 EHCI HOST CONTROLLER

Enhanced HCl is the specifications that apply to the relation between the host controller and the HCD software. This chapter provides the data structure that is used. For details, see the **Enhanced Host Controller Interface Specification Revision 1.0.**

5.1 Control EHCI Host Controller by HCD

The HCD executes communication between the HC and USB devices, based on the enqueued iTD (Isochronous Transfer Descriptor), siTD (Split transaction Isochronous Transfer Descriptor), QH (Queue Head), and qTD (Queue element Transfer Descriptor). These descriptors contain information such as maximum packet size, endpoint address, endpoint speed, data flow direction, and buffer positions in system memory etc.

5.2 Isochronous Transfer Descriptor

An iTD is used only for high-speed isochronous endpoints. This always allocated in 16-Dword units to system memory.

5.2.1 Isochronous transfer descriptor format

Table 5-1. Isochronous Transfer Descriptor Format

	31 30 29 28	27 26 25 24 23 22 21 20 19 18 17 1	6 15 1	4 13 12	11 10 09	08 07 (06 05 0	04 03	02 01 00
Dword0	Next Link Pointer (NLP)							0	TYP T
Dword1	STA	Transaction 0 Length (T0L)	ı	Р	Trai	nsactio	n 0 Off	fset (T	OO)
Dword2	STA	Transaction 1 Length (T1L)	ı	Р	Trai	nsactio	n 1 Off	fset (T	10)
Dword3	STA	Transaction 2 Length (T2L)	ı	Р	Trai	nsactio	n 2 Off	fset (T	20)
Dword4	STA	Transaction 3 Length (T3L)	ı	Р	Trai	nsactio	n 3 Off	fset (T	30)
Dword5	STA	Transaction 4 Length (T4L)	ı	Р	Trai	nsactio	n 4 Off	fset (T	40)
Dword6	STA	Transaction 5 Length (T5L)	ı	Р	Transaction 5 Offset (T5O)				
Dword7	STA	Р	Transaction 6 Offset (T6O)						
Dword8	STA	Transaction 7 Length (T7L)	ı	Р	Transaction 7 Offset (T7O)				
Dword9		Buffer Pointer (BP Page 0)			EP	0		DA	
Dword10		Buffer Pointer (BP Page 1)			D		MPS	3	
Dword11		Buffer Pointer (BP Page 2)				C)		MLT
Dword12		Buffer Pointer (BP Page 3)			0				
Dword13	Buffer Pointer (BP Page 4)						0		
Dword14		Buffer Pointer (BP Page 5)					0		
Dword15		Buffer Pointer (BP Page 6)					0		

5.2.2 Isochronous transfer descriptor field definitions

Table 5-2. Description of Isochronous Transfer Descriptors

(1/2)

			(1/2)					
Name	HC Access		Description					
NLP	R	Next Link Pointer This field indicates another Isochronous Transaction descriptor (iTD or siTD) or Queue Head (QH).						
TYP	R	QH/(s)iTD/FSTN select This indicates the descriptor t 00b: iTD 01b: QH 10b: siTD 11b: FSTN	ype.					
Т	R	Terminate 1: Link Pointer field is not val 0: Link Pointer field is valid.	id.					
STA	R/W	Status Offset Description Bit 3 Active	Definition HCD set this bit to a one to enable the execution of this transaction. When the transaction associated with this descriptor is completed, HC sets this bit to a zero.					
		Bit 2 Data buffer Error Bit 1 Babble Detected Bit 0 Transaction Error	HC set this bit to a one to indicate overrun or underrun. HC set this bit to a one to indicate that a "babble" is detected. HC set this bit to a one to indicate that transaction error.					
TxL	R/W	Transaction X Length For an OUT, this field is the n transaction. HC does not upd For an IN, the initial value of t	umber of data bytes HC will send during an isochronous					
I	R	Interrupt On Complete If this bit is set to a one, it speinterrupt at the next interrupt if	ecifies that when the transaction completes, HC should issue an threshold.					
Р	R/W	-	indicate which of the buffer page pointers the offset field should be starting memory address. For an OUT, these fields may be modified					
TxO	RW	Transaction X Offset This field is a value that is an be modified by HC.	offset from the beginning of a buffer. For an OUT, these fields may					
BP	R	Buffer Pointer This is a 4K aligned pointer to	p physical memory.					
EP	R	Endpoint Number						
DA	R	Device Address						

(2/2)

Name	HC Access	Description
D	R	Direction Indicates the data flow direction (IN or OUT) 1: IN 0: OUT
MPS	R	Maximum Packet Size This field indicates the maximum number of bytes (1024 bytes) per data packet that can be received from the endpoint or sent to an endpoint.
MLT	R	Multi This field is used to indicate to HC the number of transactions that should be executed per transaction description. 00b: Reserved 01b: One transaction per transaction description 10b: Two transactions per transaction description 11b: Three transactions per transaction description

5.3 Split Transaction Isochronous Transfer Descriptor

All full-speed isochronous transfers through Transaction Translators are managed using the siTD data structure. This always allocated in 7-Dword units to system memory.

5.3.1 Split transaction isochronous transfer descriptor format

Table 5-3. Split Transaction Isochronous Transfer Descriptor Format

	31 30 29 28 27 26	25 24 23	22 21 20 19 18 17 16	15 14 13 12	11 10 09 08	07 06 05	04 03 (02 01 00	
Dword0		Next Link Pointer (NLP)							
Dword1	D PN	0	НА	0	EP	0	DA		
Dword2		0		UF	UFCM				
Dword3	I P 0		TBT	CF	PM	STA			
Dword4	В	uffer Poin	nter (BP Page 0)		Current Offset (CO)				
Dword5	В		0 TP -			TC			
Dword6			Back Pointer (BK	(P)			0	Т	

5.3.2 Split transaction isochronous transfer descriptor field definitions

Table 5-4. Description of Split Transaction Isochronous Transfer Descriptors

(1/2)Name **HC Access** Description NLP R **Next Link Pointer** This field indicates another Isochronous Transaction descriptor (iTD or siTD) or Queue Head (QH). TYP R QH/(s)iTD/FSTN select This indicates the descriptor type. 00b: iTD 01b: QH 10b: siTD 11b: FSTN Т R 1: Link Pointer field or Back Pointer field is not valid. 0: Link Pointer field or Back Pointer field is valid. D R Direction Indicates the data flow direction (IN or OUT) 1: IN 0: OUT PΝ R Port Number This field indicates the port number of the recipient transaction translator. НΑ R **Hub Address** This field holds the device address of the transaction translator's hub. ΕP R **Endpoint Number** R DA **Device Address UFCM** R Split Completion Mask (µFrame C-mask) This field are used to determine during which micro-frames HC should execute complete-split transactions.

87

(2/2)

Name	HC Access			Description					
UFSM	R		Split Start Mask (μ Frame S-mask) This field are used to determine during which micro-frames HC should execute start-split transactions.						
1	R	If this bit is se	Interrupt On Complete If this bit is set to a one, it specifies that when the transaction completes, HC should issue an interrupt at the next interrupt threshold.						
Р	R/W	Page Select Used to indic buffer pointe		e pointer should be concatenated with the CO to construct a data	ı				
TBT	R/W	Total Bytes t		otal number of bytes expected in this transfer.					
СРМ	R/W	-	nplete-split Progress used by HC to recor	Mask d which split-completes has been executed.					
STA	R/W		Description Active	Definition HCD set this bit to a one to enable the execution of this					
			ERR	transaction. HC set this bit to a one when an ERR response is received from the transaction translator.					
			Data buffer Error Babble Detected	HC set this bit to a one to indicate overrun or underrun. HC set this bit to a one to indicate that a "babble" is detected.					
		Bit 2 Bit 1	Transaction Error Missed µFrame SplitXstate reserved	HC set this bit to a one to indicate that transaction error. miss a required complete-split transaction. 0: Do start split 1: Do complete split					
ВР	R	Buffer Pointe This is a 4K	er aligned pointer to ph	nysical memory.					
СО	R/W	Current offse This field is a	-	set from the beginning of a buffer.					
TP	R/W	Transaction 00b: All 01b: Begin 10b: Mid. 11b: End.	position						
TC	R/W	Transaction HCD initiates		umber of OUT start-splits this transfer requires.					
ВКР	R	siTD Back Po	ointer sical memory pointe	er to an siTD.	_				

5.4 Queue Element Transfer Descriptor

This data structure is only used with queue head. This structure can describe one or more USB transaction. This structure is 32 bytes (or one 32-byte cache line).

5.4.1 Queue element transfer descriptor format

Table 5-5. Queue Element Transfer Descriptor Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 Dword0 Next qTD Pointer (NTP) 0 Т Т Dword1 Alternate Next qTD Pointer (ANTP) 0 dt EC PID Dword2 STA Dword3 Buffer Pointer (BP Page 0) Current Offset (CO) Dword4 Buffer Pointer (BP Page 1) 0 Dword5 Buffer Pointer (BP Page 2) 0 Dword6 Buffer Pointer (BP Page 3) 0 Dword7 Buffer Pointer (BP Page 4) 0

5.4.2 Queue element transfer descriptor field definitions

Table 5-6. Description of Queue Element Transfer Descriptors

(1/2)

Name	HC Access	Description	
NTP	R	Next Element Transaction Descriptor Link Pointer This field indicates next Queue element Transaction descriptor.	
ANTP	R	Alternate Next Element Transaction Descriptor Link Pointer This field contains the physical memory address of the next qTD to be processed in the event that the current qTD execution encounters a short packet.	
Т	R	Terminate 1: Pointer field is not valid. 0: Pointer field is valid.	
dt	R/W	Data Toggle This is data toggle sequence bit.	
ТВТ	R/W	Total Bytes to Transfer HCD initiates this field with the total number of bytes expected in this transfer.	
I	R	Interrupt On Complete If this bit is set to a one, it specifies that when the transaction completes, HC should issue an interrupt at the next interrupt threshold.	
СР	R/W	Current Page This field is used as an index into the qTD buffer pointer list.	
EC	R/W	Error Counter This is a 2 bit down counter. When HC find transaction error, HC decreases this field.	
PID	R	PID Code 00: OUT 01: IN 10: SETUP 11: Reserved	

(2/2)

Name	HC Access			Description					
STA	R/W	Status							
		Offset	Description	Definition					
		Bit 7	Active	HCD set this bit to a one to enable the execution of this transaction.					
		Bit 6	Halted	HC set this bit to a one when a serious error has occurred at the device/endpoint address.					
		Bit 5	Data buffer Error	HC set this bit to a one to indicate overrun or underrun.					
		Bit 4	Babble Detected	HC set this bit to a one to indicate that a "babble" is detected.					
		Bit 3	Transaction Error	HC set this bit to a one to indicate that transaction error.					
		Bit 2	Missed µFrame	see specification.					
		Bit 1	SplitXstate	0: Do start split 1: Do complete split					
		Bit 0	Ping State	0: Do OUT 1: Do PING					
BP	R	Buffer Pointer This is a 4K ali	gned pointer to physic	cal memory.					
СО	R/W	Current offset This field is a v	alue that is an offset f	rom the beginning of a buffer.					

5.5 Queue Head

All interrupt, control, and bulk data transfers are managed via Queue Head. It is always allocated in 12 Dword units to system memory.

5.5.1 Queue head format

Table 5-7. Queue Head Format

	31 30 29 2	8 27 26 25 24 23	22 21 20 19 18 17 16	15 1	14 13 12	11 10	09 08 (07 (06 05	04 03	02 01	00
Dword0		Queue l	Head Horizontal Link	ро	inter (QI	IP)				0	TYP	Т
Dword1	RL	С	MPS	Н	dtc EPS	Е	Р	ı		DA		
Dword2	MLT	PN	HA		UF	СМ				UFSN	1	
Dword3			Current qTD Pointer	(C	ГР)					0		
Dword4		P)				()	Т				
Dword5		Alte	rnate Next qTD Poin	ter	(ANTP)					N	С	Т
Dword6	dt	TB	Т	ı	CP	EC	PID	STA				
Dword7		Buffer Poi	nter (BP Page 0)			Current Offset (CO)						
Dword8	Buffer Pointer (BP Page 1)					0			СРМ			
Dword9	Buffer Pointer (BP Page 2)					SB FT						
Dword10	Buffer Pointer (BP Page 3)					0						
Dword11		Buffer Poi	nter (BP Page 4)		•	0						

5.5.2 Queue head field definitions

Table 5-8. Description of Queue Head

(1/2)

Name	HC Access	Description	
QHP	R	Queue Head Horizontal Link Pointer This field indicates another Queue Head (QH).	
TYP	R	QH/(s)iTD/FSTN select This indicates the descriptor type. 00b: iTD 01b: QH 10b: siTD 11b: FSTN	
Т	R	Terminate 1: Pointer field is not valid. 0: Pointer field is valid.	
RL	R	Nak Count Reload This field contains a value, which is used by HC to reload the Nak Counter field.	
С	R	Control Endpoint Flag HCD set this bit to a one to indicate the endpoint is not a high-speed device, and the endpoint is a control endpoint.	
MPS	R	Maximum Packet Size This field indicates the maximum number of bytes (1024 bytes) per data packet that can be received from the endpoint or sent to an endpoint.	
Н	R	Head of Reclamation List Flag HCD set this bit to a one to mark a queue head as being the head of the reclamation list.	

(2/2)

Name	HC Access	Description
dtc	R	Data Toggle Control 0b: Ignore dt bit from incoming qTD. HC preserves dt bit in QH. 1b: Initial data toggle comes from incoming qTD dt bit.
EPS	R	Endpoint Speed 00b: Full-speed 01b: Low-speed 10b: High-speed 11b: Reserved
EP	R	Endpoint Number
1	R	Inactive on Next Transaction This bit is set only when the queue head is in the Periodic Schedule and the EPS field indicates Full- or Low-speed.
DA	R	Device Address
MLT	R	Multi This field is used to indicate to HC the number of transactions that should be executed per transaction description. 00b: Reserved 01b: One transaction per transaction description 10b: Two transactions per transaction description 11b: Three transactions per transaction description
PN	R	Port Number This field indicates the port number of the recipient transaction translator.
НА	R	Hub Address This field holds the device address of the transaction translator's hub.
UFCM	R	Split Completion Mask (<i>u</i> Frame C-mask) This field are used to determine during which micro-frames HC should execute complete-split transactions.
UFSM	R	Split Start Mask (µFrame S-mask) This field are used to determine during which micro-frames HC should execute start-split transactions.
СТР	R	Current Element Transaction Descriptor Link Pointer This field indicates current Queue element Transaction descriptor.
NC	R/W	Nak counter This is a counter HC decrements whenever a transaction results in a Nak or Nyet response.
СРМ	R/W	μFrame Complete-split Progress Mask This field is used to track the progress of an interrupt split-transaction.
FT	R/W	Split-transaction Frame Tag This field is used to track the progress of an interrupt split-transaction.
SB	R/W	S-byte This field is used to keep track of the number of bytes sent or received during a IN or OUT split-transaction.

5.6 Periodic Frame Span Traversal Node (FSTN)

This data structure is only used for Full-/Low-speed transaction that spans a Host-frame boundary.

5.6.1 Periodic frame span traversal node descriptor format

Table 5-9. Periodic Frame Span Traversal Node Descriptor Format

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05	<u>04 03</u>	02 01	00
Dword0	Normal Path Link Pointer	0	TYP	Т
Dword1	Back Path Link Pointer	0	TYP	Т

5.6.2 Periodic frame span traversal node field definitions

Table 5-10. Description of Periodic Frame Span Traversal Node Field

Name	HC Access	Description
NPLP	R	Normal Path Link Pointer This field contains the address of the next data to be processed in the periodic list.
TYP	R	QH/(s)iTD/FSTN select This indicates the descriptor type. 00b: iTD 01b: QH 10b: siTD 11b: FSTN
Т	R	Terminate 1: Pointer field is not valid. 0: Pointer field is valid.
BPLP	R	Back Path Link Pointer This field contains the address of Queue Head.
TYP	R	Must be set to indicate Queue Head.
Т	R	Terminate 1: Pointer field is not valid. 0: Pointer field is valid.

CHAPTER 6 POWER MANAGEMENT

The μ PD720102 supports some power management functions.

- 1. Compliant with PCI Bus Power Management Interface Specification (Rev 1.1)
- 2. Support PCI CLKRUN# signal
- 3. Support special clock stopping operation to minimize the power consumption. ,etc

This chapter describes the power management.

6.1 Bus Power States and Function Power Management States

This section defines the PCI Bus Power States, USB Bus States, and PCI Function Power Management States.

6.1.1 PCI bus power states

- B0 : Vcc = On, PCLK = 33 MHz, PCI Bus activity = any PCI transaction, interrupt, or PME (Power Management Event) event. A system reset always returns the PCI bus to B0. Also, CLKRUN function is included this state. For detail about CLKRUN, see **PCI Mobile Design Guide Version1.1**.
- B1: Vcc = On, PCLK = 33 MHz, PCI Bus activity = PME event, State of PCI Bus is a perpetual idle. All PCI bus signals are required to be held at valid logic states at all time. Bus parking is allowed.
- B2 : Vcc = On, PCLK = Stopped and held in the low state, PCI Bus activity = PME event. All PCI bus signals are required to be held at valid logic states at all time. Bus parking is allowed.
- B3: Vcc = Off, PCLK = N/A, PCI Bus activity = PME event

6.1.2 USB bus states

USB_Reset : USB Bus = Reset, stopped USB bus activity

USB_Operational : USB Bus = Active

USB_Suspend: USB Bus = Suspend, Constant J state

USB_Resume : USB Bus = Resume, K state

6.1.3 PCI function power management states

The μ PD720102 has two host controller cores (OHCI, EHCI). Each host controller core has its power management registers, which comply with PCI Bus Power Management Interface Specification (Rev 1.1), respectively. However, it is illogical to put each host controller core into different PCI Function Power Management States. Same value shall be written to the power management registers of two host controller cores.

D0: Normal operation state.

During this state, PCI Bus Power State should be "B0" and PCLK is just 33 MHz. And then PCI side can use any PCI transaction which is used by host controller cores, interrupt, and PME event. On the other hand, the host controller cores are put into one of the following USB Bus States (USB_Reset, USB_Operational, USB Suspend, or USB Resume).

D1 : Light sleep state.

During this state, PCI Bus Power State should be either "B0" or "B1". PCLK is just 33MHz. If PCI Bus Power State is "B1", host controller cores will be allowed only PME event. For USB side, the host controller cores are put into one of the following USB Bus States (USB_Reset, USB_Suspend).

D2: Sleep state.

During this state, PCI Bus Power State can be put into "B0", "B1", or "B2". If PCI Bus Power State is "B1" or "B2", the host controller cores will be allowed only PME event. For USB side, the host controller cores are put into one of the following USB Bus States (USB_Reset, USB_Suspend).

D3hot: Disable state.

During this state, PCI Bus Power State can be put into "B0", "B1", or "B2". If PCI Bus Power State is "B1" or "B2", the host controller cores will be allowed only PME event. For USB side, the host controllers core are put into one of the following USB Bus States (USB_Reset, USB_Suspend).

D3cold: Power-off state.

During this state, PCI Bus Power State should be "B3" and the host controller cores can be allowed Bus segment reset or PME event. For USB side, the host controller cores should put into one of the following USB Bus States (USB_Reset, USB_Suspend).

6.2 Power Management Event

As above mentioned, the host controller cores can use PME (Power Management Event) event during all PCI Bus Power States. The PME event can be indicated by PME0 (Power Management Event) signal. And it is used to indicate that host controller cores' power state has changed. The following sections describe PME event.

6.2.1 PME event support

If the power state of host controller cores should be changed from D0, D1, D2, or D3hot to the other, PME event will be occurred as shown in the PME_support bits in PMC (Power Management Capabilities) register. For default setting, the host controller core does not support the wake up event detection under D3cold. If wake up event detection under D3cold support is required, bit 15 of PME_support in PMC register shall be set "high" and the Aux_Current bits in PMC register should also be set to appropriate value. The PME_support and Aux_Current can be written by BIOS when ID_write_enable in EHCl's (OHCl's) configuration space is set to "1" or can be loaded from external serial ROM with I2C I/F before starting PCI configuration registers access if serial ROM is available. When the system boot or the resuming sequence from power-off state is occurred, these bits should be restored if the host controller core supports the wake up event detection under D3cold. When these bits are set, both host controller cores (OHCI, EHCI) should be set to same appropriate value.

6.2.2 How to support the PME generation from D3cold

If the PME generation from D3cold is required, not only the setting for the related register shall be considered, but system board implementation shall be taken into consideration too.

If the PME generation from D3cold is required, the host controller cores will be put into D3cold when system goes into S3. And the system SW may set Power State and PME_En bits to appropriate value before S3 transition. When system is in S3 and the device is in D3cold, PCI Bus is not powered (B3 state) because main power is shut down. When wake up event is occurred, PME0 is asserted without PCLK.

This device does not provide 3.3Vaux pin which is power supply to realize PME0 generation under D3cold. If PME generation under D3cold is required, auxiliary power source instead of system main power supply Vcc, which supplies power to this device's Vpp for S3 system sate, should be required on system board implementation.

Also if PME generation under D3cold support is required, reset signals shall be connected as in below.

Pin name	Support PME generation under D3cold	Not support PME generation under D3∞ld
VBBRST0	Connects to system reset signal as RSMRST#.	Connects to PCI "RST#" signal.
VCCRST0	Connects to PCI "RST#" signal. Under D3cold, this pin should be low level.	"H" clamp
VDD /AVDD33	Should be changed backup power supply under suspend mode.	Connects to system main power supply.
USB_VBUS	Should be changed backup power supply under suspend mode.	Connects to system main power supply.

When Power State bits in PMCSR register indicate D3 and VBBRST0 is clamped high, this device maintain register values as defined in PCI Bus Power Management Interface Specification (Rev 1.1), even if system goes into S3(VCCRST0 goes low). When Power State bits in PMCSR are not D3, VCCRST0 resets whole circuit in this device. VCCRST0 also controls enable or disable PCI Bus signal. It is useful to avoid some noise such as invalid PCI write access on the PCI Bus under D3cold.

When supporting PME generation under D3cold, VCCRST0 should be controlled as in below.

- 1) VCCRST0 should be "high" during normal PCI operation.
- 2) System SW sets the appropriate conditions in OHCI/EHCI host controller, described in chapter 6.2.3.
- 3) System SW sets D3 in Power State bits.
- 4) System goes into S3 state (PCI B3 state) and VCCRST0 goes low.
- 5) When USB wake-up event occurs, PME0 is asserted.
- 6) When PCI Bus wakes up from B3, VCCRST0 should be set to "high" after PCI Bus state transitions to B0 (after PCI RST# is deasserted).

If the PME generation from D3cold is not required, VCCRST0 is always tied to VDD bus line.

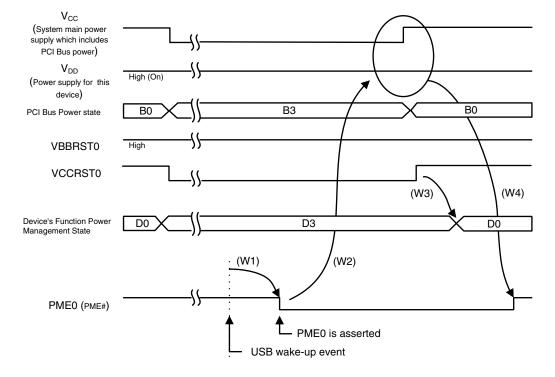


Figure 6-1. Wake Up State Transition from D3cold

- (W1): USB wake up event occurs and host controller asserts PME0.
- (W2): After the system chipset receives PME0, the system starts wake-up sequence. The chipset wakes system power supply and clock generator up. And then, system main power supply is activated and system PCI Bus transits from B3 to B0.
- (W3): When the device find the rising edge of VCCRST0, PME_State bit in Power Management Control/Status (PMCSR) transits from D3 to D0. And host controller can accept PCI bus access.
- (W4): System SW (BIOS) checks each PME_Status register for 2 host controller cores in the device via PCI configuration access.

6.2.3 PME0 assertion condition

The Power Management Event signal (PME0) of this device is OR-ed signal of the value of PME_Status bit in PMECSR register, which is the part of power management registers. The power management registers, which comply with PCI Bus Power Management Interface Specification (Rev 1.1), are provided by two host controller cores (OHCI, EHCI) respectively and are allocated in configuration space. Each PME_Status bit is set by wake up event which is allowed for each port.

- When the port is controlled by OHCI, the following setting should be done to reflect PME event detection on PME_Status bit. If the wake-up event is the connect/disconnect detection of the USB device, DRWE bit in HcRhStatus reg. and RWE bit in HcControl reg. of related OHCI host controller should be set to "1".
- If the wake-up event is the resume signal (remote wake up event) from USB device, RWE bit in HcControl reg. of related OHCI host controller should be set to "1".

When the port is controlled by EHCI, the following setting should be done to reflect PME event detection on PME_Status bit.

- If the wake-up event is the device connect detection of the USB device, WKCNNT_E bit in PORTSCn reg. should be set to "1".
- If the wake-up event is the device disconnect detection of the USB device, WKDSCNNT_E bit in PORTSCn reg. should be set to "1".
- If the wake-up event is the over-current detection, WKOC_E bit in PORTSCn reg. should be set to "1".

When PME_En bit in PMECSR register is set to "1", the value of related PME_Status bit is appeared at PME0 pin. The assertion and deassertion of PME0 signal is not synchronized with PCI "CLK" (PCLK). So, even if PCLK is stopped, this device can assert PME0 signal. It is possible to generate PME0 signal under D0, D1, D2, D3hot, and D3cold (by special setting).

After above setting, PME0 signal will be asserted if wake up event is detected.

1) D0: Normal operation state.

USB = USB_Suspend, the port is controlled by OHCI. :

For PME0 assertion

Action	RWE bit	DRWE bit	PME_En bit	PME0
Device connect	0	Х	X	Disable
	1	0	X	Disable
	1	Х	0	Disable
	1	1	1	Enable
Device disconnect	0	Х	×	Disable
	1	0	×	Disable
	1	Х	0	Disable
	1	1	1	Enable
Remote wake up	0	Х	×	Disable
	1	Х	0	Disable
	1	Х	1	Enable

For Interrupt (INTA0) assertion

Action	DRWE bit	RD bit	RHSC bit	Interrupt
Device connect	0	Х	0	Disable
	0	Х	1	Enable
	1	0	0	Disable
	1	Х	1	Enable
	1	1	×	Enable
Device disconnect	0	X	0	Disable
	0	X	1	Enable
	1	0	0	Disable
	1	X	1	Enable
	1	1	×	Enable
Remote wake up	Х	0	×	Disable
	Х	1	X	Enable

Remarks 1. RD bit is located in HcInterruptEnable Reg.

- 2. RHSC bit is located in HcInterruptEnable Reg.
- 3. If device disconnect event is occurred under RWE = DRWE = PME_EN = 1 and RD or RHSC = 1, PME0 and INTA0 will be asserted at the same time.
- 4. After wake-up event is detected, even if RWE and DRWE are set to "1", PME0/INTA0 will not be asserted by latest wake-up event. On the other hand, if PME_En, RD, and RHSC are set to "1" after wake-up event is detected, PME0/INTA0 will be asserted by latest wake-up event.

USB = USB_Suspend (Port suspend), the port is controlled by EHCl. :

For PME0 assertion

Action	WKCNNT_E bit	WKDSCNNT_E bit	WKOC_E bit	PME_En bit	PME0
Device	0	Х	Х	Х	Disable
connect	1	Х	Х	0	Disable
	1	Х	Х	1	Enable
Device	Х	0	Х	Х	Disable
disconnect	Х	1	Х	0	Disable
	Х	1	Х	1	Enable
Remote wake-	Х	X	Х	0	Disable
up	Х	X	Х	1	Enable
Over current	Х	X	0	Х	Disable
	Х	X	1	0	Disable
	Х	X	1	1	Enable

For Interrupt (INTA0) assertion

Action	Port Change Interrupt Enable bit	Interrupt	
Device connect	0	Disable	
	1	Enable	
Device disconnect	0	Disable	
	1	Enable	
Remote wake up	0	Disable	
	1	Enable	
Overcurrent	0	Disable	
	1	Enable	

Remarks 1. Port Change Interrupt Enable (PCIE) bit is located in USBINTR Reg.

- If device disconnect event is occurred under WKDSCNNT_E = PME_EN = PCIE = 1, PME0 and INTA0 will be asserted at the same time.
- 3. After related wake-up event is detected, even if WKCNNT_E, WKDSCNNT_E or WKOC_E are set to "1", PME0 will not be asserted by latest wake up event. On the other hand, if PME_En and PCIE are set to "1" after wake-up event is detected, PME0/INTA0 will be asserted by latest wake up event.

USB = USB_Reset, the port is controlled by OHCI:

Host controller core cannot detect the device connect, device disconnect, remote wake-up event. It detects only over current state.

USB = USB_Reset (Port Reset), the port is controlled by EHCI:

Host controller core cannot detect the device disconnect, remote wake-up event. Also, the device connect is not detected because the device is connected to port under Port Reset. It detects only over current state.

2) D1 : Light sleep state, D2 : Sleep state, D3 $_{hot}$ or D3 $_{cold}$: Disable state. USB = USB_Suspend/USB_Reset, the port is controlled by OHCI. :

For PME0 assertion

Action	RWE bit	DRWE bit	PME_EN bit	PME0
Device connect	0	Х	×	Disable
	1	0	×	Disable
	1	Х	0	Disable
	1	1	1	Enable
Device disconnect	0	Х	×	Disable
	1	0	×	Disable
	1	Х	0	Disable
	1	1	1	Enable
Remote wake up	0	Х	×	Disable
	1	Х	0	Disable
	1	Х	1	Enable

Remark After wake up event is detected, even if RWE and DRWE are set to "1", PME0 will not be asserted by latest wake up event. On the other hand, if PME_En is set to "1" after wake up event is detected, PME0 will be asserted by latest wake up event.

For Interrupt (INTA0) assertion

Not available under these device state

USB = USB_Suspend (Port suspend), the port is controlled by EHCl. :

For PME0 assertion

Action	WKCNNT_E bit	WKDSCNNT_E bit	WKOC_E bit	PME_EN bit	PME0
Device	0	х	Х	Х	Disable
connect	1	X	Х	0	Disable
	1	X	Х	1	Enable
Device	X	0	Х	Х	Disable
disconnect	X	1	Х	0	Disable
	X	1	Х	1	Enable
Remote wake-	X	х	Х	0	Disable
up	X	х	Х	1	Enable
Overcurrent	X	х	0	Х	Disable
	×	X	1	0	Disable
	X	X	1	1	Enable

Remark After related wake up event is detected, even if WKCNNT_E, WKDSCNNT_E or WKOC_E are set to "1", PME0 will not be asserted by latest wake up event. On the other hand, if PME_En is set to "1" after wake up event is detected, PME0 will be asserted by latest wake-up event.

For Interrupt (INTA0) assertion

Not available under these device state

6.3 Control for System Clock Operation

When host controller cores are put into power down state as D1, D2 and D3hot, clock system is controlled to reduce power consumption. This section describes the clock system and the power management for clock path.

6.3.1 Clock system

The μ PD720102 uses 30 MHz crystal or 48 MHz oscillator for system clock signal. System clock frequency is selected by CLKSEL signal. Internal analog PLL generates the system clock signals for internal logic circuit. Internal system clock signals can be controlled to stop and run by μ PD720102 itself. In case of using 48 MHz oscillator (CLKSEL is high), 48MHz clock must be always supplied.

PCI clock is independent of system clock and it is used for only PCI related logic to realize power management control. Figure 6-2 shows μ PD720102's clock system, except for PCI clock.

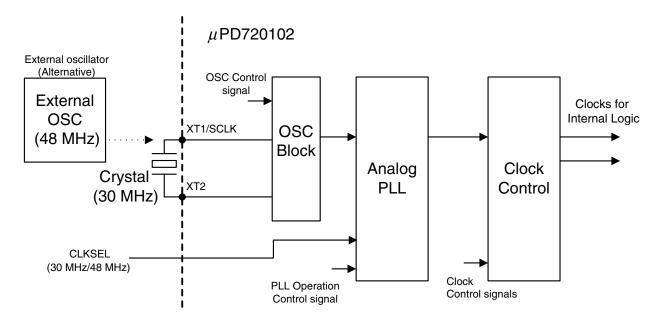


Figure 6-2. μ PD720102's Clock System

6.3.2 Condition for clock system stopping/resuming

There are 3 levels of the internal clock control to minimize power consumption of this device. Lower level is that HC stops the clocks for internal logic. Middle level is that HC stops the clocks for internal logic and analog PLL. Higher level is that HC stops all clock signals, which include internal oscillator block, completely.

At first, the following register setting should be satisfied to stop clock function.

- 1) HcHalted bit in USBSTS reg. for EHCl should be set to "1".
- 2) Suspend bit in PORTSCn register should be set to "1" or Port Enabled/Disabled bit in PORTSCn register should be set to "0". This means that all ports should be put into suspend or disabled.
- 3) HCFS bit in HcControl reg. should be set to "USB_Suspend" or "USB_Reset".

And then the level of the internal clock control of this device depends on VCCRST0 signals and Power State bits in PMCSR register of each host controllers.

a. Stop condition of the clocks for internal logic stop condition

- 1) VCCRST0 should be set to "high".
- 2) All PCI Function Power Management States of 2 host controller cores are D0 sate.

b. Stop condition of the clocks for internal logic and analog PLL

- 1) VCCRST0 should be set to "high".
- 2) All PCI Function Power Management States of 2 host controller cores are not D0 sate.

c. Stop condition of whole clocks including internal oscillator block (only for using 30 MHz crystal)

- 1) VCCRST0 should be set to "low".
- 2) All PCI Function Power Management States of 2 host controller cores are not D0 sate.

When one of the following conditions is satisfied, the internal oscillator block and analog PLL restarts.

- System has changed the setting as above mentioned.
- 2) There is any bus activity (remote wake up signaling, connect/disconnect at any port) on USB Bus line.
- 3) Over-current condition is detected, when over-current detection is allowed as a wake-up event.

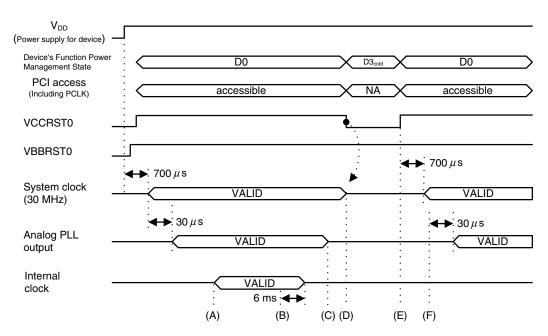


Figure 6-3. Clock Operation Diagram (Using 30 MHz Crystal)

- (A): System starts write access to operational register of OHCI/EHCI, or one of the following condition is met. (USBSTS.HcHalted = '0')
 - or (HcControl.HCFS = "USB Operational")
- (B): System stops write access to operational register of OHCI/EHCI, and the following condition is met. (USBSTS.HcHalted = '1')
 - and (HcControl.HCFS = "USB_Suspend" or "USB_Reset")
 - and (All ports are suspended or disabled)
- (C): System sets all Power state bits of the host controller to NOT D0 state.
- (D): VCCRST0 becomes "L" and this device becomes D3cold state.
- (E): VCCRST0 becomes "H" and this device recovers from D3cold state to D0.
- (F): System sets one of the Power state bit of the host controller to D0 state.

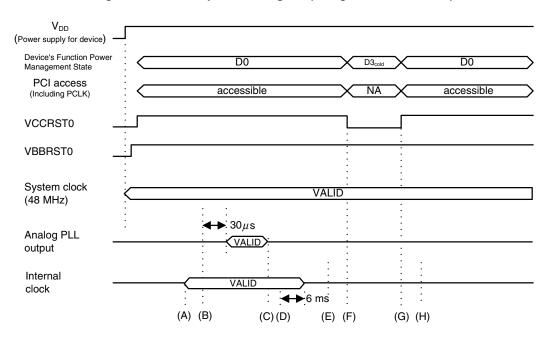


Figure 6-4. Clock Operation Diagram (Using 48 MHz Oscillator)

- (A): System starts write access to operational register of OHCI/EHCI, or the following condition is met. (HcControl.HCFS = "USB_Operational")
- (B): System sets USBCMD.Run/Stop bit to "1" and analog PLL is enabled.
- (C): Analog PLL is disabled in the following condition.

(USBCMD.HcHalted is set to "1")

and (EHCI is idle state)

and (Port owner is EHCI and not in Reset/Resume sequence)

(D): System stops write access to operational register of OHCI/EHCI, and the following condition are met. (USBSTS.HcHalted = '1')

and (HcControl.HCFS = "USB_Suspend" or "USB_Reset") and (All ports are suspended or disabled)

- (E): System sets all Power state bits of the host controller to NOT D0 state.
- (F): VCCRST0 becomes "L" and this device becomes D3cold state.
- (G): VCCRST0 becomes "H" and this device recovers from D3cold state to D0.
- (H): System sets one of the Power state bit of the host controller to D0 state.

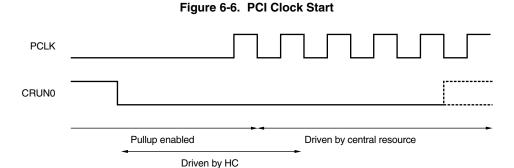
6.3.3 CLKRUN# support

This device supports CLKRUN# signal, and system can stop PCI clock when HC does not need PCI operation. This section describes CLKRUN# signals.

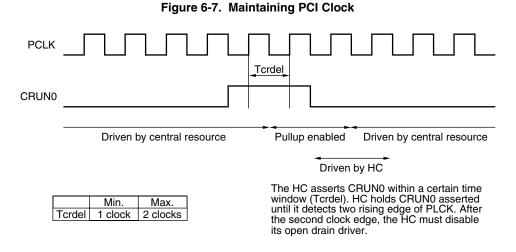
HC can accept to stop PCI clock except for following condition.

- OHCI host controller core needs to work as PCI bus master function.
- USBCMD register's RS bit in EHCI host controller is set to "1".

Figure 6-5 shows PCI clock stop sequence and Figure 6-6 shows PCI clock start sequence. After CRUN0 is deasserted, PCLK continues to run for a minimum of 4 clock period.


Figure 6-5. PCI Clock Stop

Driven by central resource Pullup enabled


PCLK

CRUN0

HC asserts CRUN0 asynchronously and it holds CRUN0 asserted until it detects two rising edge of PCLK. After the second clock edge, HC disables its open drain buffer. The central resource drives CRUN0 low at any time after it detects that the line asserted by HC, but not later than on 3rd clock. It also must not drive CRUN0 high earlier than on 5th clock.

HC may require the PCI clock to complete current internal processes. At that time, HC will assert CRUN0 for two successive clocks after it has been deasserted.

CHAPTER 7 HYPER-SPEED TRANSFER MODE

The μ PD720102 supports "Hyper-Speed Transfer Mode" for asynchronous transfer in high-speed mode, and it can greatly improve data transfer rate for high-speed devices supporting bulk transfer, such as USB storage, scanner, printer, etc. To use this function, "Hyper-Speed transfer control #1 to #3" in EXT1/EXT2 register in PCI configuration space must be set to appropriate value. To set values in these registers, there are two ways. One is from HSMODE signal, and the other is from PCI configuration register or external serial ROM.

7.1 Setting from HSMODE

HSMODE signal enables all of the "Hyper-Speed transfer control #1 to #3" in EXT1/EXT2 register automatically. If HSMODE is set to "high", related registers are set as in below.

- Hyper-Speed transfer control #1 = '1' (Fixed value and read only from PCI configuration space)
- Hyper-Speed transfer control #2 = '02h' (Read/write from PCI configuration space)
- Hyper-Speed transfer control #3 = '1' (Fixed value and read only from PCI configuration space)

In this case, HSMODE must be clamped to "high" and system must not control this signal.

7.2 Setting from PCI configuration space (or external serial ROM)

If HSMODE is set to "low", all of the "Hyper-Speed transfer control #1 to #3" bits are disabled. These bits can be set from PCI configuration cycle or external serial ROM. System software (or external serial ROM) should set these bits according to system requirements.

7.3 No need to support "Hyper-Speed Transfer Mode"

When system does not require higher data transfer rate, NEC recommends disabling this mode to reduce CPU load and PCI access. In this case, the following settings are desirable.

- HSMODE = '0'
- Hyper-Speed transfer control #1 = '0'
- Hyper-Speed transfer control #2 = '10h'
- Hyper-Speed transfer control #3 = '0'

CHAPTER 8 HOW TO WRITE EXTERNAL SERIAL ROM

In this device, some fields such as subsystem ID in PCI configuration registers are programmable. This device has I^2C interface to hold the 24 bytes customer specific value for PCI configuration registers on external serial ROM. This chapter describes how to use external serial ROM interface.

8.1 Registers to Control I²C Interface

The three registers, which are allocated in EHCl's operational register space, are used to control I²C Interface. And then, EHCl_mask bit (in EXT2 register) in OHCl PCl configuration space should be set to a zero to enable EHCl's operational register space if I²C interface. These registers are write-only. When these registers are read, it returns 00h.

Register: I2C_CMD Offset Address: F4h

Field	Bit	Read/Write HCD	Value (Default)	Comment
Page Write Command (PWC)	0	W	Undefined	1: Issue page_write command to external serial ROM. 0: Issue sequential_read command to external serial ROM.
Page for Page Write	2:1	W	Undefined	 00: When PWC = 1, Page_0 page_write command will be issued. 01: When PWC = 1, Page_1 page_write command will be issued. 10: When PWC = 1, Page_2 page_write command will be issued. 11: When PWC = 0, sequential_read command will be issued.
Reserved	31 : 3	NA	Undefined	Reserved

Register: I2C_WND0 Offset Address: F8h

Field	Bit	Read/Write HCD	Value (Default)	Comment
Window0	31:0	W	Undefined	Lower Dword temporarily register for page_write to external serial ROM. This register should be written as Dword.

Register: I2C_WND1 Offset Address: FCh

Field	Bit	Read/Write HCD	Value (Default)	Comment
Window1	31:0	W	Undefined	Upper Dword temporarily register for page_write to external serial ROM. This register should be written as Dword.

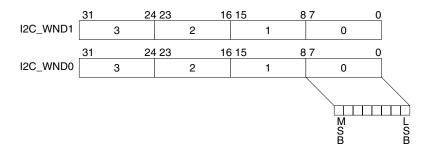
8.2 Supported Command for I²C Interface

The I²C interface of HC supports only 8 bytes mode page_write and sequential_read command. When programming external serial ROM for the first time, 3 page_write commands shall be issued to hold all 24 bytes customer specific value for PCI configuration registers. When partial data is required to be updated in serial ROM, page (8 bytes) boundary shall be written. Note that Serial ROM can not be used with I²C, which does not support 8 bytes mode page_write command. Table 8-1 shows the semantics for each byte or bit in each page.

Table 8-1. Semantics for Each Byte/Bit in Page

(1/2)

Page	Byte No.	Semantics	Default Value	Window
Page_0	0	Lower byte of Subsystem Vender ID for OHCI	33h	I2C_WND0
Page_0	1	Upper byte of Subsystem Vender ID for OHCI	10h	
Page_0	2	Lower byte of Subsystem Vender ID for EHCI	33h	
Page_0	3	Upper byte of Subsystem Vender ID for EHCI	10h	
Page_0	0	Lower byte of Subsystem ID for OHCI	35h	I2C_WND1
Page_0	1	Upper byte of Subsystem ID for OHCI	00h	
Page_0	2	Lower byte of Subsystem ID for EHCI	E0h	
Page_0	3	Upper byte of Subsystem ID for EHCI	00h	
Page_1	0	Min_Gnt for OHCI	01h	I2C_WND0
Page_1	1	Min_Gnt for EHCI	10h	
Page_1	2	Max_Lat for OHCI	2Ah	
Page_1	3	Max_Lat for EHCI	22h	
Page_1	0 (bit2:0)	Aux_Current for OHCI	000b	I2C_WND1
Page_1	0 (bit3)	PME_support(D3cold) for OHCI	0b	
Page_1	0 (bit6:4)	Aux_Current for EHCI	000b	
Page_1	0 (bit7)	PME_support(D3cold) for EHCI	0b	
Page_1	1 (bit0)	Hyper-Speed transfer control #1 in EXT1	0b	
Page_1	1 (bit5:1)	NEC private #7 (Should write default value.)	10h	
Page_1	1 (bit7:6)	Port_no in EXT1	3h ^{Note}	
Page_1	2 (bit4:0)	Hyper-speed transfer control #2 in EXT1	02h	
Page_1	2 (bit5)	Ppcnt in EXT1	1b	
Page_1	2 (bit6)	NEC private #1 (Should write default value.)	1b	
Page_1	2 (bit7)	NEC private #6 (Should write default value.)	1b	
Page_1	3 (bit3:0)	NEC private #5 (Should write default value.)	3h	
Page_1	3 (bit4)	NEC private #4 (Should write default value.)	0b	
Page_1	3 (bit5)	NEC private #3 (Should write default value.)	0b	
Page_1	3 (bit6)	NEC private #2 (Should write default value.)	1b	
Page_1	3 (bit7)	EHCI_mask in EXT2 register	0b	


Note Prohibited setting the value except for 1h to 3h.

				(2/2)
Page	Byte No.	Semantics	Default Value	Window
Page_2	0 (bit0)	Hyper-Speed transfer control #3 in EXT1	0b	I2C_WND0
Page_2	0 (bit1)	NEC private #8 (Should write default value.)	0b	
Page_2	0 (bit2)	NEC private #9 (Fixed value.)	1b	
Page_2	0 (bit3)	NEC private #10 (Should write default value.)	0b	
Page_2	0 (bit7:4)	Reserved	-	
Page_2	1 (bit7:0)	Potpgt in EXT1	01h	
Page_2	2 (bit7:0)	NEC private #11 (Should write default value.)	6Ch	
Page_2	3 (bit7:0)	Reserved	-	
Page_2	0-3	Reserved	-	I2C_WND1

The default value in table shows the initial value of register in EXT1/EXT2 Reg without external serial ROM. NEC private bytes or bits should be written as default value when external serial ROM is used.

When external serial ROM is programmed for the first time, data for Page_0 to I2C_WND0 and I2C_WND1 shall be written first. When Page for Page Write field is written 00b and PWC is written a one at same time, the page_write command to Page_0 will be issued and 8 bytes data, which are set in I2C_WND0 and I2C_WND1, are written to external serial ROM. After page_write command is completed, the same thing for Page_1 followed by Page_2 shall be repeated.

Figure 8-1. I2C_WND0/1 vs. Byte No.

Timing chart for expected external serial ROM with I²C interface is as follows. This host controller issues "000b" for device address, and these three bits must correspond to hard-wired setting of serial ROM (Refer to **Figure 9-5. External Serial ROM Connection**).

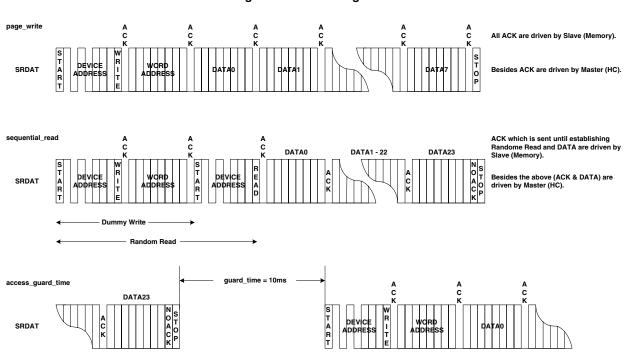


Figure 8-2. I²C Timing Chart

It takes about 2 ms to complete page_write command and more than 12 ms shall be waited before starting next page_write or sequential_read command. On the other hands, It takes about 5 ms to complete sequential_read command. So, more than 15 ms shall be waited before starting next page_write or sequential_read command. And also more than 5 ms shall be waited before reading PCI configuration register after sequential_read command starts.

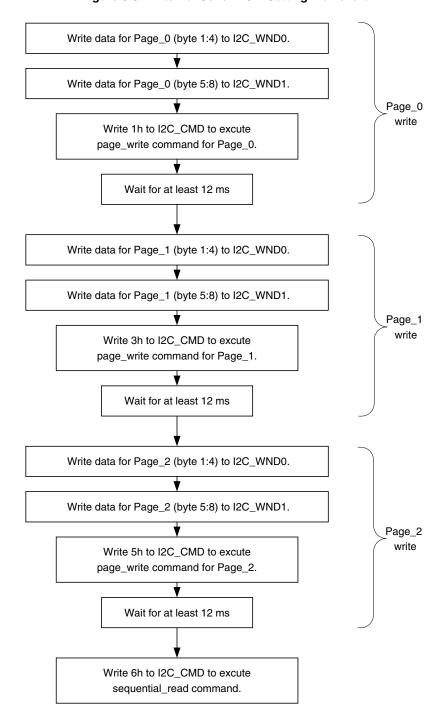


Figure 8-3. External Serial ROM Setting Flowchart

CHAPTER 9 HOW TO CONNECT TO EXTERNAL ELEMENTS

9.1 Handling Unused Pins

To realize less than 3 ports host controller implementation, appropriate value shall be set to port_no field in EXT1 register. And unused pins shall be connected as shown below.

 Pin
 Direction
 Connection Method

 DPx
 I/O
 No Connection (Open)

 DMx
 I/O
 No Connection (Open)

"H" clamp

No Connection (Open)

0

Table 9-1. Unused Pin Connection

9.2 USB Port Connection

OCIx

PPONx

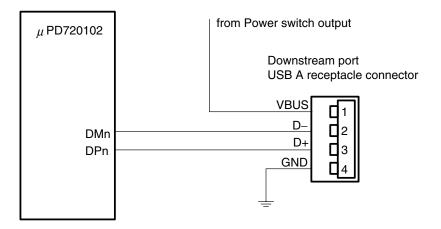
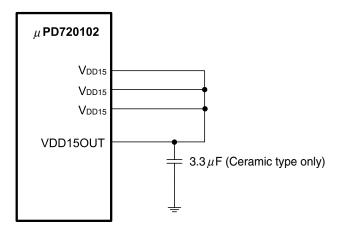
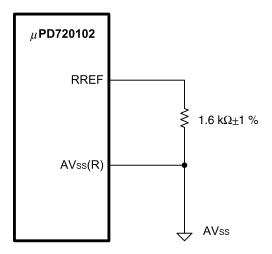



Figure 9-1. USB Downstream Port Connection

9.3 Internal Regulator Circuit Connection

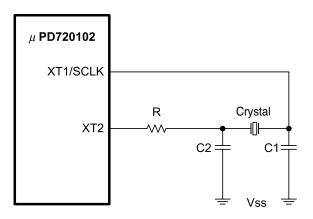
Figure 9-2. Internal regulator circuit Connection



Caution VDD15OUT must be routed to only V_{DD15} (and AV_{DD15}). In case that VDD15OUT is also used for power supply of other ICs, this may cause unstable operation of the μ PD720102.

Remark V_{DD15} is powered by VDD15OUT from internal regulator. It is not necessary to use external regulator for V_{DD15}.

9.4 Analog Circuit Connection


Figure 9-3. RREF Connection

Remark The board layout should minimize the total path length from RREF through the resistor to AVss(R) and path length to AVss (analog ground). AVss must be stable.

9.5 Crystal Connection

Figure 9-4. Crystal Connection

The following crystals are evaluated on our reference design board. Table 9-2 shows the external parameters.

Table 9-2. External Parameters

Vender	Crystal	R	C1	C2
KDS Note 1	AT-49 30.000 MHz	100 Ω	12 pF	12 pF
NDK Note 2	AT-41 30.000 MHz	470 Ω	10 pF	10 pF

Notes 1. DAISHINKU CORP.

2. NIHON DEMPA KOGYO CO., LTD.

In using these crystals, contact KDS or NDK to get the specification on external components to be used in conjunction with the crystal.

KDS's Home page: http://www.kds.info/english.html NDK's home page: http://www.ndk.com/

9.6 External Serial ROM Connection

Figure 9-5. External Serial ROM Connection

The following serial ROM is used on our reference design board.

Table 9-3. External Parameters

Vender	Product name	Size
Atmel Corporation	AT24C01A-10SC-2.7	128 bytes

SRMOD/SRCLK/SRDTA can be opened, when serial ROM is not necessary on board.

CHAPTER 10 PRODUCT SPECIFICATIONS

10.1 Buffer List

• 3.3 V input buffer

CLKSEL, HSMODE

• 3.3 V input buffer with pull down resistor

SRMOD, TESTEN, TEST3, TEST4

• 3.3 V input schmitt buffer

VBBRST0, VCCRST0

• 3.3 V IoL = 9 mA bi-directional buffer

SMI0, PPON(3:1), SRCLK, SRDTA

• 3.3 V lo_L = 9 mA bi-directional buffer with enable (OR type)

OCI(3:1)0

• 3.3 V PCI input buffer with enable (OR type)

IDSEL, GNT0, PCLK

• 3.3 V PCI bi-directional buffer with enable (OR type)

AD(31:0), CBE(3:0)0, PAR, FRAME0, IRDY0, TRDY0, STOP0, DEVSEL0, REQ0, PERR0, SERR0, INTA0, CRUN0

• N-ch open drain buffer

PME0

• 3.3 V oscillator interface

XT1/SCLK, XT2

• USB interface, analog signal

DP(3:1), DM(3:1), RREF

10.2 Terminology

Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning
Power supply voltage	VDD, VDD15, AVDD, AVDD15	Indicates the voltage range within which damage or reduced reliability will not result when power is applied to a VDD pin.
Input voltage	Vı	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an input pin.
Output voltage	Vo	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an output pin.
Output current	lo	Indicates absolute tolerance values for DC current to prevent damage or reduced reliability when current flows out of or into output pin.
Operating temperature	TA	Indicates the ambient temperature range for normal logic operations.
Storage temperature	T _{stg}	Indicates the element temperature range within which damage or reduced reliability will not result while no voltage or current is applied to the device.

Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	V _{DD} , AV _{DD}	Indicates the voltage range for normal logic operations occur when $V_{\text{SS}} = 0 \text{ V}$.
High-level input voltage	VIH	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the high level states for normal operation of the input buffer.
		* If a voltage that is equal to or greater than the "Min." value is applied, the input voltage is guaranteed as high level voltage.
Low-level input voltage	VIL	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the low level states for normal operation of the input buffer.
		* If a voltage that is equal to or lesser than the "Max." value is applied, the input voltage is guaranteed as low level voltage.
Hysteresis voltage	Vн	Indicates the differential between the positive and the negative trigger voltage.
Input rise time	tri	Indicates allowable input rise time to input signal transition time from 0.1 x V_{DD} to 0.9 x V_{DD} .
Input fall time	t fi	Indicates allowable input fall time to input signal transition time from 0.9 x V_{DD} to 0.1 x V_{DD} .

Terms Used in DC Characteristics

Parameter	Symbol	Meaning
Off-state output leakage current	loz	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied when a 3-state output has high impedance.
Input leakage current	lı .	Indicates the current that flows when the input voltage is supplied to the input pin.
Low-level output current	loг	Indicates the current that flows to the output pins when the rated low-level output voltage is being applied.
High-level output current	Іон	Indicates the current that flows from the output pins when the rated high-level output voltage is being applied.

10.3 Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V _{DD} , AV _{DD}		-0.5 to 4.6	V
	V _{DD15} , AV _{DD15}		-0.5 to 2.0	V
Input voltage, 3.3 V buffer	Vı	V _I < V _{DD} + 0.5 V	-0.5 to 4.6	V
Output voltage, 3.3 V buffer	Vo	Vo < VDD + 0.5 V	-0.5 to 4.6	V
Output current	lo	3.3 V buffer (IoL = 9 mA)	29	mA
		PCI buffer	58	mA
Operating ambient temperature	TA		-20 to 70	°C
Storage temperature	T _{stg}		-40 to 125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameters. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Recommended Operating Ranges

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating voltage	VDD, AVDD		3.135	3.3	3.465	V
High-level input voltage	VIH					
3.3 V high-level input voltage		VBBRST0, VCCRST0	2.4		V_{DD}	V
		Other input pins	2.0		V _{DD}	V
Low-level input voltage	VIL					
3.3 V low-level input voltage		VBBRST0, VCCRST0	0		0.6	V
		Other input pins	0		0.8	V
Hysteresis voltage	Vн					
3.3 V hysteresis voltage			0.3		1.5	V
Input rise time	tri					
Normal buffer			0		200	ns
Schmitt buffer			0		10	ms
Input fall time	tri					
Normal buffer			0		200	ns
Schmitt buffer			0		10	ms

DC Characteristics (V_{DD} = 3.135 to 3.465 V, T_A = -20 to +70°C)

Control pin block

Parameter	Symbol	Condition	Min.	Max.	Unit
Off-state output current	loz	Vo = VDD or Vss		±10	μΑ
Low-level output current	loL				
3.3 V low-level output current (9 mA)		Vol = 0.4 V	9.0		mA
High-level output current	Іон				
3.3 V high-level output current (9 mA)		VoH = 2.4 V	-9.0		mA
Input leakage current	lı				
3.3 V buffer		VI = VDD or Vss		±10	μΑ
3.3 V buffer with pull down resistor		$V_I = V_{DD}$		175	μΑ

PCI interface block

Parameter	Symbol	Condition	Min.	Max.	Unit
High-level input voltage	ViH		0.5V _{DD}	V _{DD} +0.5	٧
Low-level input voltage	VIL		-0.5	0.3V _{DD}	V
Low-level output current	loL	Vol = 0.1VDD	1.5		mA
High-level output current	Іон	VoH = 0.9VDD	-0.5		mA
Input leakage current	lii	0 < VIN < VDD		±10	μΑ
PME0 leakage current	loff	Vo < 3.6 V		1	μΑ
		V _{DD} off or floating			

USB interface block

Parameter	Symbol	Conditions	Min.	Max.	Unit
Output pin impedance	ZHSDRV		40.5	49.5	Ω
Input Levels for Low-/full-speed:					
High-level input voltage (drive)	ViH		2.0		٧
High-level input voltage (floating)	V _{IHZ}		2.7	3.6	٧
Low-level input voltage	VIL			0.8	٧
Differential input sensitivity	V DI	(D+) – (D–)	0.2		٧
Differential common mode range	Vсм	Includes V _{DI} range	0.8	2.5	٧
Output Levels for Low-/full-speed:					
High-level output voltage	Vон	R∟ of 14.25 kΩ to GND	2.8	3.6	٧
Low-level output voltage	Vol	R _L of 1.425 kΩ to 3.6 V	0.0	0.3	٧
SE1	Vose1		0.8		٧
Output signal crossover point voltage	Vcrs		1.3	2.0	٧
Input Levels for High-speed:					
High-speed squelch detection threshold (differential signal)	VHSSQ		100	150	mV
High-speed disconnect detection threshold (differential signal)	VHSDSC		525	625	mV
High-speed data signaling common mode voltage range	Vнsсм		-50	+500	mV
High-speed differential input signaling level	See Figure	e 10-2.	1	•	W.
Output Levels for High-speed:					
High-speed idle state	VHSOI		-10	+10	mV
High-speed data signaling high	V _{HSOH}		360	440	mV
High-speed data signaling low	VHSOL		-10	+10	mV
Chirp J level (differential signal)	VCHIRPJ		700	1100	mV
Chirp K level (differential signal)	Vchirpk		-900	-500	mV

Figure 10-1. Differential Input Sensitivity Range for Low-/Full-speed

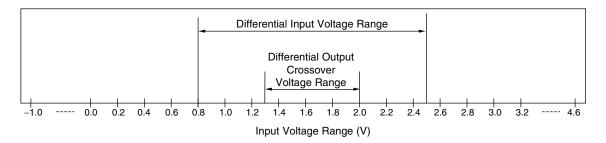


Figure 10-2. Receiver Sensitivity for Transceiver at DP/DM

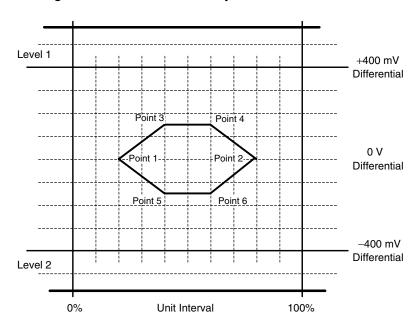
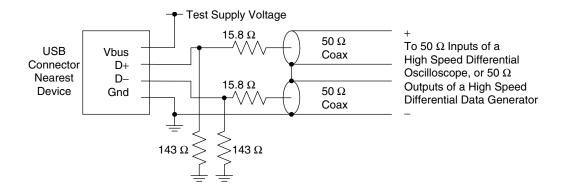



Figure 10-3. Receiver Measurement Fixtures

Power consumption

Parameter	Symbol	Condition	With 30 MHz \Crystal			8 MHz llator	Unit
			Тур.	Max.	Тур.	Max.	
Power Consumption	P _{WD0-0}	Device state = D0, All the ports does not connect to any function, and each OHCI controller is under UsbSuspend and EHCI controller is stopped. Note 1	11.0	16.0	3.0	7.0	mA
	PwD0-1	The power consumption under the state without suspend. Device state = D0, The number of active ports is 1.					
		Full- or low-speed device is on the port.	15.6	22.6	7.7	13.5	mA
		High-speed device is on the port.	60.3	70.8	60.7	71.3	mA
	PwD0-2	The power consumption under the state without suspend. Device state = D0, The number of active ports is 2.					
		Full- or low-speed devices are on the port.	17.4	31.6	9.5	22.4	mA
		High-speed devices are on the port.	96.1	111.8	96.6	112.4	mA
	PwD0-3	The power consumption under the state without suspend. Device state = D0, The number of active ports is 3.					
		Full- or low-speed devices are on the port.	18.8	40.0	10.8	31.5	mA
		High-speed devices are on the port.	130.7	151.8	131.2	152.2	mA
	Pwdo_c	The power consumption under suspend state during PCI clock is stopped by CRUN0. Device state = D0.	11.0	16.0	3.0	7.0	mA
	P _{WD1}	Device state = D1, Analog PLL output is stopped. Note 3	2.1	5.9	3.0	7.0	mA
	P _{WD2}	Device state = D2, Analog PLL output is stopped. Note 3	2.1	5.9	3.0	7.0	mA
	Рwdзн	Device state = D3hot, VCCRST0 = High, Analog PLL output is stopped. Note 3	2.1	5.9	3.0	7.0	mA
	Pwdsc	Device state = D3cold, VCCRST0 = Low. Note 4	0.03	3.0	1.38	5.2	mA

Notes 1. When any device is not connected to all the ports of HC, the power consumption for HC does not depend on the number of active ports.

- 2. The number of active ports is set by the value of port_no Field in PCI configuration space EXT register.
- 3. This is the case when PCI bus state is B0.
- 4. This is the case when PCI bus state is B3.

Remark These are estimated value on Windows™ XP environment.

Pin capacitance

Parameter	Symbol	Condition	Min.	Max.	Unit
Input capacitance	Cı	V _{DD} = 0 V, T _A = 25°C		8	pF
Output capacitance	Co	fc = 1 MHz		8	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V		8	pF
PCI input pin capacitance	Cin			8	pF
PCI clock input pin capacitance	Cclk			8	pF
PCI IDSEL input pin capacitance	CIDSEL			8	pF

AC Characteristics (VDD = 3.135 to 3.465 V, TA = -20 to +70°C)

System clock ratings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock frequency	fclk	Crystal	-500	30	+500	MHz
			ppm		ppm	
		Oscillator block	-500	48	+500	MHz
			ppm		ppm	
Clock duty cycle	t DUTY		40	50	60	%

Remarks 1. Recommended accuracy of clock frequency is \pm 100 ppm.

2. Required accuracy of crystal or oscillator block is including initial frequency accuracy, the spread of crystal capacitor loading, supply voltage, temperature, and aging, etc.

PCI interface block

Parameter Symbol Condition Min. Max. Unit <R> PCI clock cycle time 30 33 ns PCI clock pulse, high-level width 11 ns **t**high PCI clock pulse, low-level width tlow 11 ns 0.2VDD to 0.6VDD PCI clock, rise slew rate S_{cr} 1 V/ns PCI clock, fall slew rate S_{cf} 0.2V_{DD} to 0.6V_{DD} 1 V/ns PCI reset active time (vs. power supply stability) trst 1 ms PCI reset active time (vs. CLK start) trst-clk 100 μ s Output float delay time (vs. RST0↓) 40 trst-off ns PCI reset rise slew rate S_{rr} mV/ns 50 PCI bus signal output time (vs. PCLK1) 2 11 PCI point-to-point signal output time (vs. PCLK1) tval (ptp) REQ0 2 ns Output delay time (vs. PCLK1) 2 ton ns Output float delay time (vs. PCLK1) 28 ns Input setup time (vs. PCLK↑) 7 tsu ns Point-to-point input setup time (vs. $PCLK^{\uparrow}$) GNT0 tsu (ptp) 10 ns th Input hold time 0

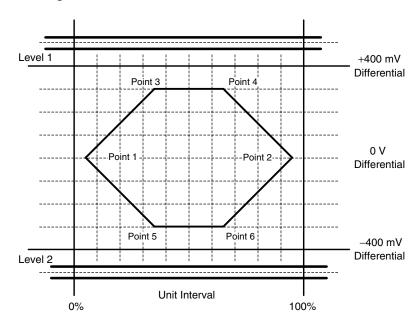
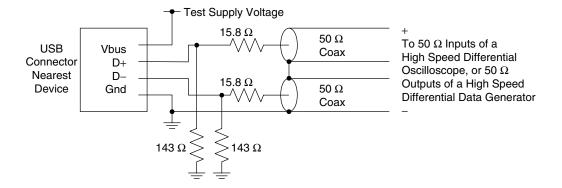
USB interface block

(1/2)

Parameter	Symbol	Conditions	Min.	Max.	Unit
Low-speed Source Electrical Characteri	stics				
Rise time (10 to 90%)	tlr	C_L = 200 to 600 pF, Rs = 36 Ω	75	300	ns
Fall time (90 to 10%)	tlf	C_L = 200 to 600 pF, R_S = 36 Ω	75	300	ns
Differential rise and fall time matching	turfm	(tlr/tlf)	80	125	%
Low-speed data rate	t ldraths	Average bit rate	1.49925	1.50075	Mbps
Source jitter total (including frequency tolerance): To next transition For paired transitions	todji todje		-25 -14	+25 +14	ns ns
Source jitter for differential transition to SE0 transition	t ldeop		-40	+100	ns
Receiver jitter: To next transition For paired transitions	tuuri tuuri		-152 -200	+152 +200	ns ns
Source SE0 interval of EOP	t leopt		1.25	1.50	μs
Receiver SE0 interval of EOP	t LEOPR		670		ns
Width of SE0 interval during differential transition	tғsт			210	ns
Full-speed Source Electrical Characteris	stics				
Rise time (10 to 90%)	tra	C _L = 50 pF	4	20	ns
Fall time (90 to 10%)	tff	C _L = 50 pF	4	20	ns
Differential rise and fall time matching	t FRFM	(tfr/tff)	90	111.11	%
Full-speed data rate	t FDRATHS	Average bit rate	11.9940	12.0060	Mbps
Frame interval	trame		0.9995	1.0005	ms
Consecutive frame interval jitter	trFI	No clock adjustment		42	ns
Source jitter total (including frequency tolerance): To next transition For paired transitions	toJ1 toJ2		-3.5 -4.0	+3.5 +4.0	ns ns
Source jitter for differential transition to SE0 transition	t FDEOP		-2	+5	ns
Receiver jitter: To next transition For paired transitions	turi turi		-18.5 -9	+18.5 +9	ns ns
Source SE0 interval of EOP	t FEOPT		160	175	ns
Receiver SE0 interval of EOP	t FEOPR		82		ns
Width of SE0 interval during differential transition	t FST			14	ns

(2/2)

Parameter	Cymbol	Conditions	Min.	Mov	(2/2 Unit
	Symbol	Conditions	Min.	Max.	Unit
High-speed Source Electrical Characterist				<u> </u>	
Rise time (10 to 90%)	thsr		500		ps
Fall time (90 to 10%)	thsf		500		ps
Driver waveform	See Figure	e 10-4.		T	1
High-speed data rate	thsdrat		479.760	480.240	Mbps
Microframe interval	t HSFRAM		124.9375	125.0625	μs
Consecutive microframe interval difference	thsrfi			4 high- speed	Bit times
Data source jitter	See Figure	e 10-4.			
Receiver jitter tolerance	See Figure	e 10-2.			
Hub Event Timings					
Time to detect a downstream facing port connect event	tdcnn		2.5	2000	μs
Time to detect a disconnect event at a hub's downstream facing port	todis		2.0	2.5	μs
Duration of driving resume to a downstream port	torsmon	Nominal	20		ms
Time from detecting downstream resume to rebroadcast	tursm			1.0	ms
Inter-packet delay for packets traveling in same direction for high-speed	thsipdsd		88		Bit times
Inter-packet delay for packets traveling in opposite direction for high-speed	thsipdod		8		Bit times
Inter-packet delay for root hub response for high-speed	thsrspipd1			192	Bit times
Time for which a Chirp J or Chirp K must be continuously detected during reset handshake	tғішт		2.5		μs
Time after end of device Chirp K by which hub must start driving first Chirp K	twтосн			100	μs
Time for which each individual Chirp J or Chirp K in the chirp sequence is driven downstream during reset	tосныт		40	60	μs
Time before end of reset by which a hub must end its downstream chirp sequence	tDCHSE0		100	500	μs

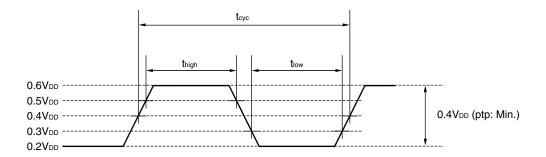
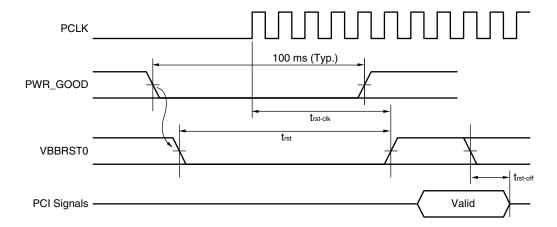
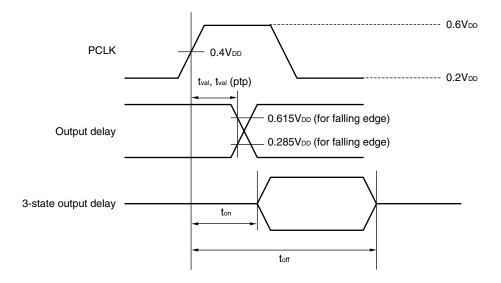

Figure 10-4. Transmit Waveform for Transceiver at DP/DM

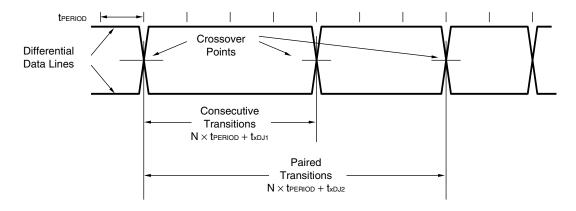
Figure 10-5. Transmitter Measurement Fixtures

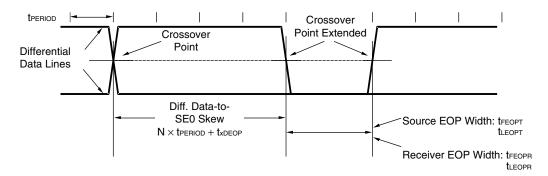


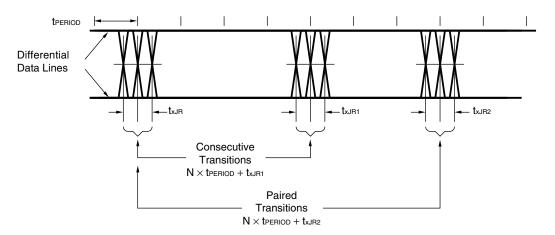
10.4 Timing Diagram

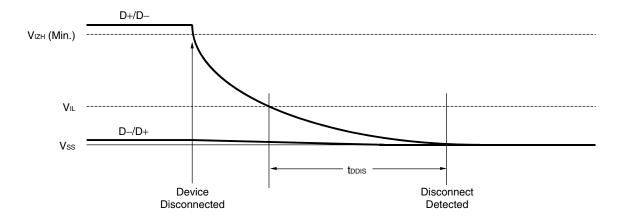

PCI clock

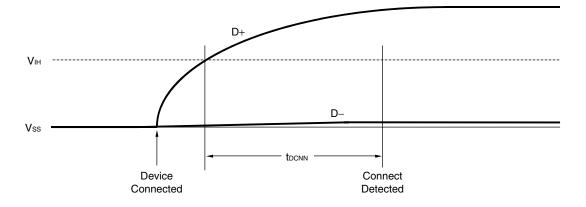
PCI reset

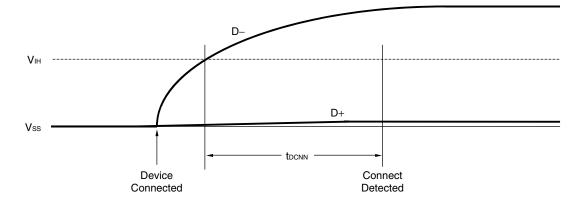

PCI output timing measurement condition


PCI input timing measurement condition

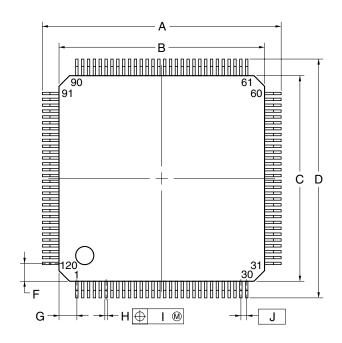

USB differential data jitter for full-speed


USB differential-to-EOP transition skew and EOP width for low-/full-speed

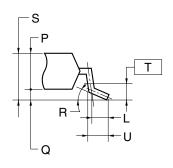

USB receiver jitter tolerance for low-/full-speed

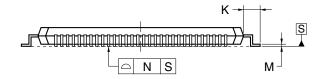

Low-/full-speed disconnect detection

Full-/high-speed device connect detection



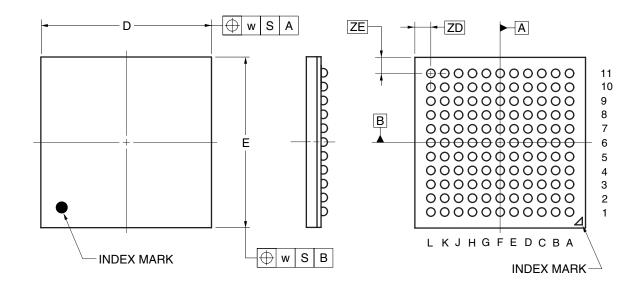
Low-speed device connect detection

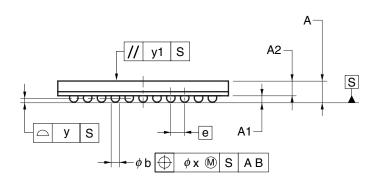



• μPD720102GC-YEB-A

120-PIN PLASTIC TQFP (FINE PITCH) (14x14)

detail of lead end


NOTE


Each lead centerline is located within 0.07 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	16.00±0.20
В	14.00±0.20
С	14.00±0.20
D	16.00±0.20
F	1.20
G	1.20
Н	0.18±0.05
I	0.07
J	0.40 (T.P.)
K	1.00±0.20
L	0.50
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.00±0.05
Q	0.10±0.05
R	3°+4°
S	1.20MAX.
Т	0.25
U	0.60±0.15
	P120GC-40-YEB-1

• μ PD720102F1-CA7-A

121-PIN PLASTIC FBGA (8x8)

	(UNIT:mm)
ITEM	DIMENSIONS
D	8.00±0.10
Е	8.00±0.10
w	0.20
Α	0.99±0.10
A1	0.30±0.05
A2	0.69
е	0.65
b	0.40±0.05
х	0.08
у	0.10
y1	0.20
ZD	0.75
ZE	0.75
	P121F1-65-CA7

© NEC Electronics Corporation 2006

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.

Room 2511-2512, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-5888-5400 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318

http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/