

General Description

QX5252 is an ASIC for solar LED lawn lights.

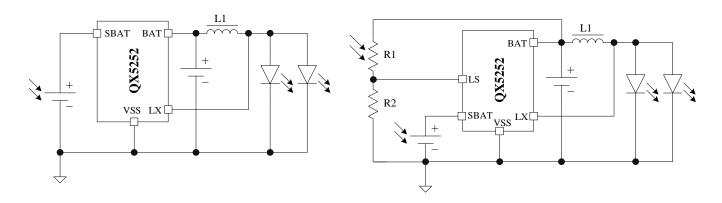
Only a peripheral inductor is required to realize the step-up power supply, and the maximum drive efficiency can exceed 84%.

QX5252 has automatical charge characteristic.

QX5252 uses CMOS technology , therefore the power consumption is very small.

QX5252 uses patented technique to realize the LED lights shutdown without flicker when the battery voltage is low.

The operating voltage of QX5252 is 0.9V to 1.5V, suitable for a single AA battery or a single Ni-H battery.


Features

- ➤ Operating Voltage: 0.9V~1.5V
- ➤ 3mA~300mA Output current
- ➤ Patented over-discharge protection: shutdown without flicker
- Integrated light control switch
- Integrated Schottky Diode
- Only an external inductor is requierd
- ➤ High Efficiency
- Low quiescent current: 17uA

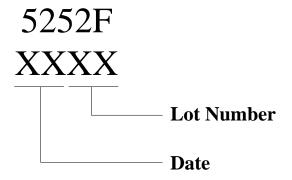
Applications

- Solar lawn
- Solar Landscape

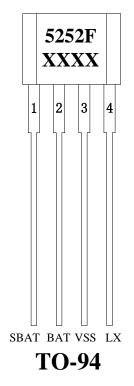
Typical Application

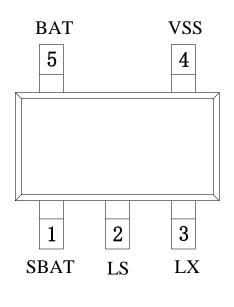
(a)Uses solar panel to achieve light control

(b) Uses photo-resistor to achieve light control


Figure 1: Typical Application Circuit Diagrams of QX5252

Ordering Information


Type Number


QX5252

Package Marking

Pin Assignments

SOT23-5

Pin Description

Pin Name	Package Type and Pin Number		Pin Type	Description	
	SOT23-5	TO-94		_	
LX	3	4	Output	Drain of the switching power MOSFET	
SBAT	1	1	Input	Connect to solar cells positive terminal	
VSS	4	3	Ground	Ground	
BAT	5	2	Output	Connect to rechargeable battery positive terminal	
LS	2	-	Input	Light sense	

Functional Block Diagram

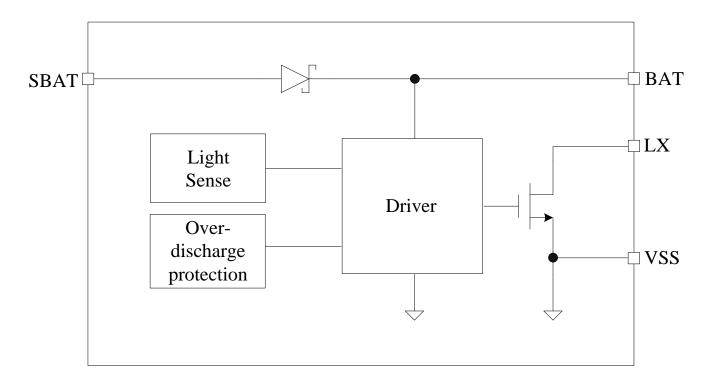


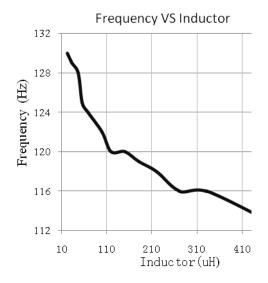
Figure 2: Functional Block Diagram of QX5252

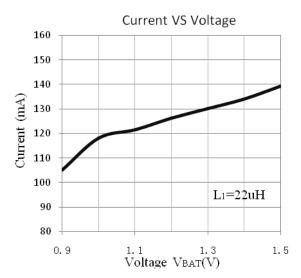
Absolute Maximum Ratings (Note 1)

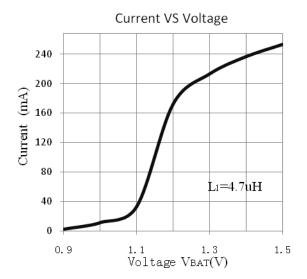
Parameter	Symbol	Description		Max	Unit
Voltage	V _{MAX}	Maximum Voltage On SBAT,BAT and LX Pins		7	V
Current	I _{LX_MAX}	Maximum Current On LX Pin		800	mA
Power Dissipation	P _{TO-94}	Maximum Power Dissipation for P _{TO-94} Package		0.75	W
	P _{SOT23-5}	Maximum Power Dissipation for P _{SOT23-5} Package		0.25	W
Thermal	T_{A}	Operating Temperature Range		85	°C
	T_{STG}	Storage Temperature Range	-40	120	°C
	T_{SD1}	Soldering Temperature Rang for TO-94 Package (less than 5 sec)	250	260	°C
	T_{SD2}	Soldering Temperature Rang for SOT23-5 Package (less than 30 sec)	230	240	°C
ESD	V _{ESD}	ESD Voltage for Human Body Mode		2000	V

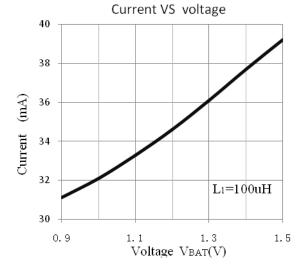
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Electronic Characteristics


 $T_A = 25$ °C, $L_1 = 47uH$, unless otherwise specified


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Supply Voltage	Supply Voltage							
Operating Voltage	V_{BAT}		0.9		1.5	V		
Supply Current								
Quiescent Current	I_{BAT0}			17		uA		
T _{ON} Time								
T _{ON} Time	T _{ON}			5		us		
Efficiency								
Efficiency	η	$L_1 = 180 uH$, $C_1 = 22 uF$		84		%		




Typical Electrical Curves

 V_{BAT} =1.2V, T_A =25 °C, unless otherwise specified

Applications Information

Detailed Description

QX5252 is an ASIC for solar LED lawn lights.

Only a peripheral inductor is required to realize the step-up power supply, and the maximum drive efficiency can exceed 84%.

QX5252 has automatically charge characteristics.

The operating voltage of QX5252 is 0.9V to 1.5V, suitable for a single AA battery or a single Ni-H battery.

QX5252 uses CMOS technology , therefore the power consumption is very small.

QX5252 uses patented technique to realize the LED lights shutdown without flicker when the battery voltage is low.

The internal circuits of QX5252 include switching driver, light control switching circuit, over-discharge protection, and the internal integrated Schottky diode.

Light Control Switch Setting

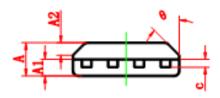
TO-94 Package Uses solar panels to achieve light control.

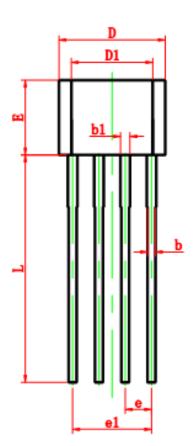
SOT23-5 Package Uses an external photo-resistor and an ordinary resistor to achieve light control, LS terminal voltage is set by the following equation:

$$V_{LS} = \frac{R2}{R1 + R2} * V_{BAT}$$

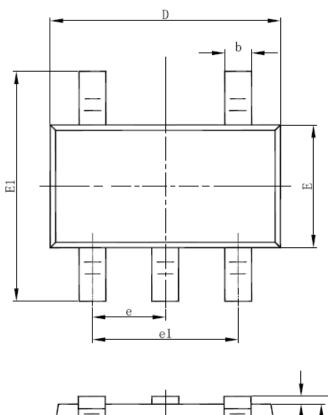
When V_{LS} higher than 0.3 * V_{BAT} , the light control switch makes the LED light control switches off, when V_{LS} lower than 0.22 * V_{BAT} , the light control switch makes the LED lights turn on.

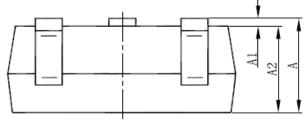
Power Setting


The LED power is set to:


$$P_{LED} = \frac{2.5 \cdot \eta \cdot V_{BAT}^2}{L_1} \times 10^{-6}$$

Package Information


Physical Dimensions for TO-94 Package:



Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.400	1.800	0.055	0.071	
A1	0.700	0.900	0.028	0.035	
A2	0.500	0.700	0.020	0.028	
b	0.360	0.500	0.014	0.020	
b1	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.980	5.280	0.196	0.208	
D1	3.780	4.080	0.149	0.161	
E	3.450	3.750	0.136	0.148	
е	1.270 TYP		0.050 TYP		
e1	3.710	3.910	0.146	0.154	
Ĺ	14.900	15.300	0.587	0.602	
θ	45° TYP		45°	TYP	

Physical Dimensions for SOT23-5 Package:

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Declaration

- ➤ QXMD reserves the right to make changes to improve technical design and semiconductor products, and may do so without further notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
- ➤ QXMD is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyers, when utilizing QXMD products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such QXMD products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that QXMD products are used within specified operating ranges as set forth in the most recent QXMD products specifications.
- The QXMD products listed in this document are intended for usage in consumer electronics applications. These QXMD products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of QXMD products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. QXMD cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a QXMD product. No circuit patent licenses are implied.

Customer Service Center

OX Micro Devices Co., Ltd.

Add: 4th Floor, Building 22, Zhiheng Hi-Tech Park, Nantou Guangkou 2nd Road, Nanshan, Shenzhen,

Guangdong, China

ZIP Code: 518052

Tel: +86-0755-88852177 Fax: +86-0755-86350858

Web Site: www.gxmd.com.cn