大容量積層セラミックコンデンサ HIGH VALUE MULTILAYER CERAMIC **CAPACITORS**

	code	Temp.characteristics	operating Temp. range
		В	-25~+85°C
	BJ	X7R	-55~+125°C
		X5R	-55~+85°C
	С	С	-25~+85°C
OPERATING TEMP.		X5S	-55~+85°C
OI EIOTINO IEMI .		X6S	-55~+105°C
	F	Е	-25~+85°C
	=	Y5U	-30~+85℃
	F	F	-25~+85°C
	-	Y5V	-30~+85℃

FEATURES

- ・電極にNi金属を使用し、端子電極部にメッキをしてあることにより、はん だ付け性および耐熱性にすぐれ、マイグレーションもほとんど発生せず、 高い信頼性を示します
- ・等価直列抵抗(ESR)が小さく、ノイズ吸収性にすぐれています。特にタンタルおよびアルミ電解コンデンサに比較した場合
- ・高い許容リップル電流値
- ・高い定格電圧でありながら小型形状
- ・絶縁抵抗、破壊電圧が高く信頼性にすぐれる 等の特徴があります

- · The use of Nickel(Ni) as material for both the internal and external electrodes improves the solderability and heat resistance characteristics. This almost completely eliminates migration and raises the level of reliability significantly.
- · Low equivalent series resistance(ESR) provides excellent noise absorption characteristics.
- · Compared to tantalum or aluminum electrolytic capacitors these ceramic capacitors offer a number of excellent features, including:

Higher permissible ripple current values

Smaller case sizes relative to rated voltage

Improved reliability due to higher insulation resistance and breakdown voltage.

用途 APPLICATIONS

- ・デジタル回路全般
- ・電源バイパスコンデンサ 液晶モジュール用 液晶駆動電圧ライン用 電源電圧の高いLSI、IC、OPアンプ用
- 平滑コンデンサ DC-DCコンバータ(入力、出力側用) スイッチング電源(2次側用)

- · General digital circuit
- Power supply bypass capacitors Liquid crystal modules Liquid crystal drive voltage lines LS I, I C, converters(both for input and output)
- Smoothing capacitors DC-DC converters (both for input and output) Switching power supplies (secondary side)

形名表記法 ORDERING CODE

2				
シリーズ名				
M	積層コンデンサ			

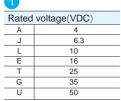
端子電	極
K	メッキ品

形状寸法 (EIA)L×W(mm) 107(0603) 1.6×0.8 212(0805) 2.0×1.25 316(1206) 3.2×1.6 3.2×2.5 432(1812)

温度特	}性 (%)	
△F	± 30 ± 80	
△C	±20	
ΔE	± 20 ± 55	
ВJ	±10	
	=	_

6	
公称前	電容量 (pF)
例	
473	47,000
105	1,000,000

容量許	容差	
K	±10	%
M	±20	%
Z	± 80 20	%


8						
製品厚み (mm)						
Α	0.8					
D	0.85					
F	1.15					
G	1.25					
H	1.5					
L	1.6					
N	1.9					
Υ	2.0max					
M	2.5					
U	3.2					

Capacitance tolerances(%) +10

 ± 20

個別仕様						
_	標準					
10						
包装						
В	単品(袋づめ)					
Т	リールテーピング					
1	1					
当社管理記号						
Δ	標準品					
	△= スペース					

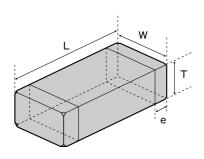
J	M	K	3	. 1	6	В	J	1	0	6	M	L	 Γ_{\perp}	\bigcirc
-														-43

2	
Series	s name
M	Multilayer Ceramic Capacitors

<u> </u>					
End termination					
K	Plated				

4	
Dimensions(ca	ase size)(mm)
107(0603)	1.6×0.8
212(0805)	2.0×1.25
316(1206)	3.2×1.6
325(1210)	3.2×2.5
432(1812)	4.5×3.2

9		
Tempe	rature cl	haracteristics code
△F	Y5V	-30~+85℃ +22/-82%
ВJ	X7R	-55~+125℃ ±15%
BJ	X5R	-55~+85℃ ±15%
△C	X5S	-55~+85℃ ±22%
△C	X6S	-55~+105℃ ±22%
ΔE	Y5U	-30~+85℃ ±22% / -56%
6		△=Blank space


ВЈ	X5R	-55~+85℃ ±15%	8	
△C	X5S	-55~+85℃ ±22%	Thickn	iess(mm)
		-55~+105°C	Α	0.8
△C	X6S	±22%	D	0.85
		-30~+85°C	F	1.15
ΔE	Y5U	±22% / -56%	G	1.25
		△=Blank space	Н	1.5
6			L	1.6
NI		:t/ - \	N	1.9
INOMI	nai ca	pacitance(pF)	Y	2.0max
example	э		M	2.5
473		47,000	U	3.2
105		1,000,000		

М

9	
9	
Specia	al code
	Standard products
10	
Packa	ging
В	Bulk

Packa	ging
В	Bulk
Т	Tape & reel
1	
Interna	al code
Δ	Standard products
	△=Blank space

外形寸法 EXTERNAL DIMENSIONS

Type (EIA)	L	W	Т		е
			0.45±0.05	к	
☐MK107	1.6±0.10	0.8±0.10	(0.018±0.002)	_ ^	0.35±0.25
(0603)	(0.063±0.004)	(0.031±0.004)	0.8±0.10	A	(0.014±0.010)
			(0.031±0.004)		
			0.45±0.05	ĸ	
	l		(0.018±0.002)	- '`	
□MK212	2.0±0.10	1.25±0.10	0.85±0.10	D	0.5±0.25
(0805)	(0.079±0.004)	(0.049±0.004)	(0.033±0.004) 1.25±0.10 *1		(0.02±0.010)
			(0.049±0.004)	G	
			0.85±0.004)		
			(0.033±0.004)	D	
			1.15+0.10		1
□MK316	3.2±0.15	1.6+0.15	(0.045±0.004)	F	0.5+0.35
(1206)	(0.126±0.006)	(0.063±0.006)	1.25±0.10		(0.020+0.014)
(1200)	(0.120=0.000)	(0.000=0.000)	(0.049±0.004)	G	(0.020_0.010)
			1.6+0.20		1
			(0.063±0.008)	L	
			0.85±0.10	D	
			(0.033±0.004)		
			1.15±0.10	F	1
			(0.045±0.004)	-	
☐MK325	3.2±0.30	2.5±0.20	1.5±0.10	н	0.6±0.3
(1210)	(0.126±0.012)	(0.098±0.008)	(0.059±0.004)		(0.024±0.012)
			1.9±0.20	l N	
			(0.075±0.008)	- ' '	
			1.9 +0.1	Y	
			(0.075 +0.004)	Y	
			2.5±0.20		1
			(0.098±0.008)	M	
			1.9 +0.1		
			(0.075 +0.004)	Y	
□ 1 1 1 1 1 0 0	4 = 1 0 40	0.010.00			
□MK432	4.5±0.40	3.2±0.30	2.5±0.20	м	0.0+0.6
(1812)	(0.177±0.016)	(0.126±0.012)	(0.098±0.008) 3.2±0.30		0.9±0.6 (0.035±0.024)
			(0.125±0.012)	U	(0.035±0.024)
	I		(U.125±0.012)		I.

Unit: mm (inch)

注:*1. ±0.15mm公差あり

Note: *1. Includding dimension tolerance ± 0.15 mm (± 0.006 inch).

概略バリエーション AVAILABLE CAPACITANCE RANGE

■汎用積層セラミックコンデンサ General Multilayer Ceramic Capacitors

Cap	Type	۵				1	07					Т					_	21	2				_		Т					3	16											-	325								Т		432		
Сар	TC		/7D		D/	X5R	_	C/X	re	F/Y	E\/	\vdash	_	3/X7F	_	_	-	B/X5		h	X5S	_	Y5\	,	+		D/V	(7R			B/X5I	o leve			Y5V		1	B/X	70	т	_	3/X5	_	_	E/Y5		_	/Y5V			В	X5R		vvce I	/Y5V
		C 25		25								E0				10									2 50	125			40								EO			10				o le						2 2					
			10	33	25	10	0 0	. 3 2	5 10	9 1	0 0.3	00	35	20	10	10	50 3	00	10 0		U D	UIIC	יין	U O	3 30	1 33	125	10	10	0.3	10 0	.3 20	JOU	33	110	10	50	25	10	10	35 2	:5 I	0 1	U O.	30.3	900	აა	10	10 0	0.3 2	5 10	10	0.3	0.0	0 0.3
	3[digit			Н	+	+	+	+	+	+	+	_	-			-	-	+	-	+	+	+	+	+	+	+	\vdash			-	+	+	+	-	\vdash	\vdash	Н		\vdash		+	+	+	+	+	+			-	_	_	-	Н	+	+
0.022					+	+	+	+	+	+	+	D	⊢		\Box	-	+	_	+	+	+	+	+	+	+	+	╀			-	+	+	+	-	╀	\vdash	Н	Н	\vdash	\vdash	+	+	+	+	+	╀	Н		+	+	_	_	Н	+	_
0.033			Α		_	_	_	_	_	+	\perp	D	_			_	_	_	_	_	_	_	\perp	_	_	\perp	┺			_	\perp	_			╙		Ш	Ш	Ш		\perp	4	_	\perp		\perp	Ш		_	\perp				_	
0.047	473		Α		_	4	_	_	\perp	\perp		G		D		_	_	_	_	_	_	\perp	\perp	\perp	\perp	┸	╙			_	\perp		┸		╙		Ш	Ш	Ш		\perp	4	\perp	\perp		┸	Ш		_	\perp			ш	_	
0.068			Α		Α							G		D																																									
0.1	104	4	Α		Αl							G																																											
0.15	154	4		П	Π.	A	Т	Т	Т	Т	Т	G	Г			П	Т	Т	Т	Т	Т	Т	Т	Т	F	Т	D			П	Т	Т	П		П	П	П	П	П	П	Т	Т	Т	Т		Т	П		П	Т		Т	П	Т	
0.22	224	4			Π.	A	Т		Α	T							G	Т	П		П				L	. [F								Π									Т										П	
0.33	334	4		П	Т	-	A	Т		Т			G						Т	Т	Т	Т	Т	Т		Т	F			П	Т				Г		П				Т	Т	Т	Т		Т				Т		П	П	Т	
0.47	474	4			П	Π,	A		Α	T								3	П		(3		Т	L	П	П								Π						П			Т		П								Т	
0.68	684	4			П	-	A			Т			П		G				П	П		Т	Т	Т		L	L	F									П				T			Т		Т								\top	
1	105	5					A	A	١.	1	١ -					G			G		G	3		Т		L		F									Н	D						Т		П									
1.5	155	5			П		Т	Т		Т								П	П			Т	П				П								П							Т		Т		П								П	
2.2	225				Т	Т	1	4	Т	Т	Α		П				Т	П	Т	Т	Т	G	; [Т	П	Т	П	L		П		Т	G		П	П	П	Н		П	N	Т	Т	Т		Т				Т		П	П	Т	
3.3	335	5					Т			Т								Т	П			Т					Г		L.F		L				Π			Ν						Т										П	
4.7	475	5		П	Т	Т	Т	Т	Т	Т	Т		П				Т	Т		G	Т	Т	G	•	Т	Т	П		L	П	L	Т	Т	G	Г	П	П		Ν	F	١	V	Т	Т		Н	П			Т	Т	П	П	Т	
6.8	685	5			П					Т								П	П	П		Т	Т				П				F	-			Π						П			Т		П								П	
10	106	3			П	П	Т	Т		Т			П							G (3	Т	Т	G		Т				L	L	L			L	L.F	П			N	N	1 N	1	Т		Т	Н	F		N	Л				
22	226									Т																					L	_				L						N	ЛΝ	1 N	1				N.F		N	1 M			
47	476	3			Т	Т				Т							T		Т				Τ				Π								Π						T			N	1	Τ				N		Τ	М	- 1	И
100	107	7			T	T				Т			Г				\neg		T	Т		Т	Т	Т		Т	Т			T		Т					П				\top		Т	Т	М					М		П	U	М	М

■低背積層セラミックコンデンサ Low profile Multilayer Ceramic Capacitors

					•		•		•											
Cap	Type	10	07				212						31	16				325		432
	TC	B/X5R	F/Y5V	B/X	(7R		B/X5R		F/Y		B/X7R		B/X5R		F/Y		B/X7R	B/>	(5R	C/X6S
	VDC	6.3	6.3	16	10	16	10	6.3	10	6.3	10	16	10	6.3	10	6.3	25	10	6.3	6.3
μF	3[digits]																			
0.22	224						K													
0.33	334																			
0.47	474	K		D																
0.68	684			D																
1	105		K		D	D		K									D			
1.5	155					D						D								
2.2	225								D		D	D								
3.3	335												D					D		
4.7	475							D		D			D		D					
6.8	685																		D	
10	106													D		D			D	
22	226																		Y	
47	476																			
100	107																			Y

温度特性記号			温度特性 Temperature chara			静電容量許容差[%]	tan∂(%)
Temp. char.Code	準执	1.規格	温度範囲(℃)	基準温度(℃)	静電容量変化率[%]	Capacitance tolerance	Dissipation factor
	Applicable	e standard	Temperature range	Ref. Temp.	Capacitance change		
BJ	JIS	В	-25~85	20	±10		2.5%max.**
ь,	EIA	X7R*	−55~125	25	±15	±20(M)	2.5 /6IIIax.
	JIS	С	-25~85	20	±20	±10(K)	
С	EIA	X5S	−55~85	25	±22	±10(10)	7.0%max.***
	EIA	X6S	−55~105	25	±22		
_	JIS	E	-25~85	20	+20-55		
=	E EIA		-30~85	25	+22-56	+80 -20(Z)	7.0%max.****
F JIS	JIS	F	−25~85	20	+30-80	-20 ⁽²⁾	7.0%max.
F	F EIA		-30 ∼85	25	+22-82		

TMKtype

GMKtype UMKtype

To type($C < 0.02 \mu$) H (H) H (H5.0%max JMKtype

LMKtype

7.5%max JMKtype 低青212type(C≥4.7 μF) 107type(C>1.0 μF)/212type(C>4.7 μF)/316type(C>10 μF)/325type(C>22 μF)/432type(C>47 μF) 107type/212type/316type (C>47 μF) 107type/212type/316type (C=10 μF), 低青316type (C=4.7 μF) UMKtype ; 325type 16%max : JMKtype ; 325type

16%max:JMKtype;107/212/316/325/432type LMKtype;107/325/432, 汎用316type (C>10 μ F)

セレクションガイド Selection Guide

アイテム一覧 Part Numbers

アイテム一覧 PART NUMBERS

■107TYPE

III/IIIFE							
定格	形名	公称	温度特性	$tan \delta$	実装条件	静電容量	厚み
電圧		静電容量	Temperature		Soldering method	許容差	Thickness
_		Capacitance		Dissipation factor	R:リフロー Reflow soldering	Capacitance	
RatedVoltage	Ordering code	[μ F]	characteristics	[%]Max.	W:フロー Wave soldering	tolerance	[mm] (inch)
35V	GMK107BJ333□A	0.033	B/X5R	3.5			0.8±0.1
35 V	GMK107BJ473□A	0.047	B/X5R	3.5			0.8±0.1
	TMK107BJ223□A	0.022	B/X7R	2.5			0.8±0.1
25V	TMK107BJ683□A	0.068	B/X5R	3.5			0.8 ± 0.1
	TMK107BJ104□A	0.1	B/X5R	3.5			0.8±0.1
	EMK107BJ333□A	0.033	B/X7R	3.5			0.8±0.1
	EMK107BJ473□A	0.047	B/X7R	3.5	R/W		0.8±0.1
16V	EMK107BJ683□A	0.068	B/X7R	3.5			0.8±0.1
100	EMK107BJ104□A	0.1	B/X7R	3.5		±10%	0.8±0.1
	EMK107BJ154□A	0.15	B/X5R	3.5		±20%	0.8±0.1
	EMK107BJ224□A	0.22	B/X5R	3.5		-20/0	0.8±0.1
	LMK107BJ334□A	0.33	B/X5R	3.5			0.8±0.1
40)/	LMK107BJ474□A	0.47	B/X5R	3.5			0.8±0.1
10V	LMK107BJ684□A	0.68	B/X5R	5			0.8±0.1
	LMK107BJ105□A	1	B/X5R	5	_		0.8±0.1
0.01/	JMK107BJ474□K	0.47	B/X5R	5	R		0.45±0.05
6.3V	JMK107BJ225□A*	2.2	B/X5R	10			0.8±0.1
4V	AMK107BJ475MA*	4.7	B/X5R	10			0.8±0.1
25V	TMK107C105□A	1	C/X5S	10	R	±20%	0.8±0.1
40)/	EMK107F224ZA	0.22	F/Y5V	7	DAM		0.8±0.1
16V	EMK107F474ZA	0.47	F/Y5V	7	R/W	1,000/	0.8±0.1
10V	LMK107F105ZA	1	F/Y5V	16		+80% -20%	0.8±0.1
6.3V	JMK107F105ZK	1	F/Y5V	16	R	-20%	0.45±0.05
0.37	JMK107F225ZA	2.2	F/Y5V	16			0.8±0.1

■212TYPF

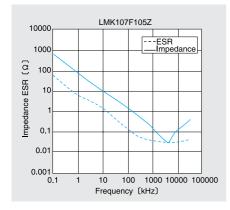
■212TYPE									
定格	形名	公 称 静電容量	温度特性	tan δ	実装条件	静電容量 許容差	厚み		
電 圧 RatedVoltage	Ordering code	Capacitance	Temperature characteristics	Dissipation factor	Soldering method R:リフロー Reflow soldering	Capacitance	Thickness [mm] (inch)		
ratoavonago	Ordering code	[μF]		[%]Max.	W:フロー Wave soldering	tolerance	[IIIII] (IIICII)		
	UMK212BJ223□D	0.022	B/X7R	2.5			0.85 ± 0.1		
	UMK212BJ333□D	0.033	B/X7R	2.5			0.85±0.1		
	UMK212BJ473□G	0.047	B/X7R	2.5			1.25±0.1		
50V	UMK212BJ683□G	0.068	B/X7R	2.5			1.25±0.1		
	UMK212BJ104□G	0.1	B/X7R	2.5			1.25±0.1		
	UMK212BJ154□G	0.15	B/X7R	3.5			1.25±0.1		
	UMK212BJ224□G	0.22	B/X5R	3.5	R/W		1.25±0.1		
05)/	GMK212BJ334□G	0.33	B/X7R	3.5	R/VV		1.25±0.1		
35V	GMK212BJ474□G	0.47	B/X5R	3.5	1		1.25±0.1		
051/	TMK212BJ473□D	0.047	B/X7R	2.5	1		0.85±0.1		
25V	TMK212BJ683□D	0.068	B/X7R	2.5			0.85±0.1		
	EMK212BJ474□D	0.47	B/X7R	3.5	1		0.85±0.1		
	EMK212BJ684□D	0.68 0.68	B/X7R	3.5		14004	0.85±0.1		
401/	EMK212BJ684□G		B/X7R	3.5		±10%	1.25±0.1		
16V	EMK212BJ105□G	1	B/X5R	3.5		±20%	1.25±0.1		
	EMK212BJ105□D	1	B/X5R	5		ĺ	0.85±0.1		
	EMK212BJ155□D	1.5	B/X5R	5			0.85±0.1		
	LMK212BJ224□K	0.22	B/X5R	3.5	R		0.45±0.05		
	LMK212BJ105□D	1	B/X7R	3.5		ĺ	0.85±0.1		
10V	LMK212BJ105□G	1	B/X7R	3.5	R/W		1.25±0.1		
	LMK212BJ225□G	2.2	B/X5R	5		İ	1.25±0.1		
	LMK212BJ335□G	3.3	B/X5R	5			1.25±0.15		
	JMK212BJ105□K	1	B/X5R	5	1		0.45±0.05		
0.01/	JMK212BJ475□D	4.7	B/X5R	10	R	ĺ	0.85±0.1		
6.3V	JMK212BJ475□G	4.7	B/X5R	5	1		1.25±0.15		
	JMK212BJ106□G*	10	B/X5R	10	1	İ	1.25±0.15		
10V	LMK212C106□G*	10	C/X5S	10			1.25±0.15		
	UMK212F224ZD	0.22	F/Y5V	7			0.85±0.1		
50V	UMK212F474ZG	0.47	F/Y5V	7	DAM.		1.25±0.1		
	UMK212F105ZG	1	F/Y5V	7	R/W		1.25±0.1		
16V	EMK212F225ZG	2.2	F/Y5V		+80%	1.25±0.1			
	LMK212F225ZG	2.2	F/Y5V	9		-20%	1.25±0.1		
10V	LMK212F475ZG	4.7	F/Y5V	9			1.25±0.1		
	LMK212F106ZG	10	F/Y5V	16	R		1.25±0.1		
6.3V	JMK212F475ZD	4.7	F/Y5V	16			0.85±0.1		

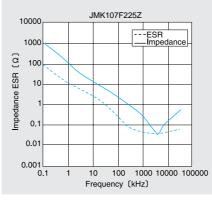
アイテム一覧 PART NUMBERS

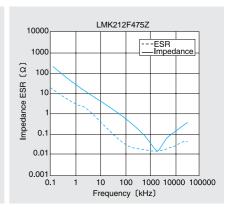
316TYPE		/3 7/			- N+ 4- //	松雨 应目	
定格	形名	公 称	温度特性	$tan \delta$	実装条件	静電容量	厚み
電 圧	<i>,,,</i> 1	静電容量	Temperature		Soldering method	許容差	Thickness
		Capacitance	characteristics	Dissipation factor	R:リフロー Reflow soldering	Capacitance	
atedVoltage	Ordering code	[μF]	characteristics	[%]Max.	W:フロー Wave soldering	tolerance	[mm] (inch)
	UMK316BJ154□F	0.15	B/X7R	2.5			1.15±0.1
50V	UMK316BJ224□L	0.22	B/X7R	2.5			1.6±0.2
	UMK316BJ474□L	0.47	B/X7R	3.5			1.6±0.2
35V	GMK316BJ684□L	0.68	B/X7R	3.5			1.6±0.2
35 V	GMK316BJ105□L	1	B/X7R	3.5	R/W		1.6±0.2
	TMK316BJ154□D	0.15	B/X7R	2.5			0.85±0.1
25V	TMK316BJ224□F	0.22	B/X7R	2.5			1.15±0.1
25 V	TMK316BJ334□F	0.33	B/X7R	2.5			1.15±0.1
	TMK316BJ684□L	0.68	B/X7R	3.5			1.6±0.2
	EMK316BJ155□D	1.5	B/X5R	3.5	R		0.85±0.1
	EMK316BJ225□D	2.2	B/X5R	3.5		±10%	0.85±0.1
L	EMK316BJ684□F	0.68	B/X7R	3.5		±10% ±20%	1.15±0.1
16V	EMK316BJ105□F	1	B/X7R	3.5	R/W	120%	1.15±0.1
	EMK316BJ225□L	2.2	B/X7R	3.5]		1.6±0.2
	EMK316BJ335□L	3.3	B/X5R	3.5			1.6±0.2
	EMK316BJ475□L	4.7	B/X5R	3.5			1.6±0.2
	LMK316BJ335□D	3.3	B/X5R	5			0.85±0.1
10V	LMK316BJ335□L	3.3	B/X7R	3.5			1.6±0.2
	LMK316BJ475□L	4.7	B/X7R	3.5	R		1.6±0.2
	JMK316BJ106□D*	10	B/X5R	10	1		0.85±0.1
6.3V	JMK316BJ106□L	10	B/X7R	5			1.6±0.2
	JMK316BJ226□L*	22	B/X5R	10			1.6±0.2
25V	TMK316C106□L	10	C/X5S	10	1		1.6±0.2
50V	UMK316F225ZG	2.2	F/Y5V	7	R/W		1.25±0.1
35V	GMK316F475ZG	4.7	F/Y5V	7			1.25±0.1
16V	EMK316F106ZL	10	F/Y5V	9	1	1,000	1.6±0.2
	LMK316F475ZD	4.7	F/Y5V	9	1 5	+80%	0.85±0.1
10V	LMK316F106ZF	10	F/Y5V	16	R	-20%	1.15±0.1
	LMK316F226ZL	22	F/Y5V	16	1		1.6±0.2
6.3V	JMK316F106ZD	10	F/Y5V	16	1		0.85±0.1

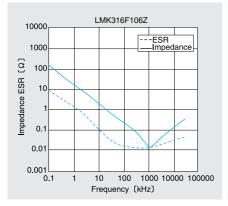
325TYPE							
定格電圧	形名	公 称 静電容量	温度特性 Temperature	tan δ	実装条件 Soldering method	静電容量 許容差	厚 み Thickness
RatedVoltage	Ordering code	Capacitance [μF]	characteristics	Dissipation factor [%]Max.	R:リフロー Reflow soldering W:フロー Wave soldering	Capacitance tolerance	[mm] (inch)
50V	UMK325BJ105□H	1	B/X7R	3.5	R/W	±10%±20%	1.5±0.1
35V	GMK325BJ225MN	2.2	B/X5R	3.5			1.9±0.2
	TMK325BJ105MD	 1	B/X7R	3.5			0.85±0.1
	TMK325BJ225MH	2.2	B/X7R	3.5			1.5±0.1
25V	TMK325BJ335MN	3.3	B/X7R	3.5			1.9±0.2
	TMK325BJ475MN	4.7	B/X5R	3.5			1.9±0.2
	TMK325BJ106MM*	10	B/X5R	3.5			2.5±0.2
	EMK325BJ475MN	4.7	B/X7R	3.5			1.9±0.2
16V	EMK325BJ106MN	10	B/X5R	3.5			1.9±0.2
	EMK325BJ226MM*	22	B/X5R	5	R	±20%	2.5±0.2
	LMK325BJ335MD	3.3	B/X5R	3.5			0.85±0.1
40)/	LMK325BJ106MN	10	B/X7R	3.5			1.9±0.2
10V	LMK325BJ226MM	22	B/X5R	5			2.5±0.2
	LMK325BJ475MD	4.7	B/X5R	5			0.85±0.1
	JMK325BJ685MD	6.8	B/X5R	5			0.85±0.1
	JMK325BJ106MD	10	B/X5R	5	1		0.85±0.1
0.01/	JMK325BJ226MY	22	B/X5R	5			1.9+0.1/-0.2
6.3V	JMK325BJ226MM	22	B/X5R	5	1		2.5±0.2
	JMK325BJ476MM*	47	B/X5R	10]		2.5±0.2
	JMK325E107ZM*	100	E/Y5U	16			2.5±0.2
50V	UMK325F475ZH	4.7	F/Y5V	9			1.5±0.1
35V	GMK325F106ZH	10	F/Y5V	7	R	+80%	1.5±0.1
10V	LMK325F226ZN	22	F/Y5V	16	1 K	-20%	1.9±0.2
0.01/	JMK325F476ZN	47	F/Y5V	16	1		1.9±0.2
6.3V	JMK325F107ZM*	100	F/Y5V	16	1		2.5±0.2

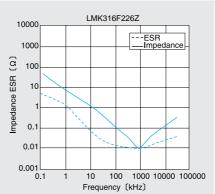
■432TYPI	Ε
----------	---

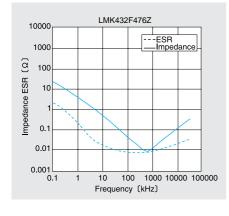

=432111 L							
定格電圧	形名	公 称 静電容量	温度特性 Temperature	$tan \delta$	実装条件 Soldering method	静電容量 許容差	厚 み Thickness
RatedVoltage	Ordering code	Capacitance [μF]	characteristics		R:リフロー Reflow soldering W:フロー Wave soldering	Capacitance tolerance	[mm] (inch)
25V	TMK432BJ106MM	10	B/X5R	3.5			2.5±0.2
16V	EMK432BJ226MM*	22	B/X5R	3.5			2.5±0.2
10V	LMK432BJ226MM	22	B/X5R	3.5			2.5±0.2
	JMK432BJ476MM*	47	B/X5R	5	R	±20%	2.5±0.2
6.3V	JMK432BJ107MU*	100	B/X5R	10			3.2±0.3
0.37	JMK432C107MM*	100	C/X6S	10			2.5±0.2
	JMK432C107MY*	100	C/X5S	10			1.9+0.1/-0.2
10V	LMK432F476ZM*	47	F/Y5V	16	R	+80%	2.5±0.2
6.3V	JMK432F107ZM*	100	F/Y5V	16	K	-20%	2.5±0.2

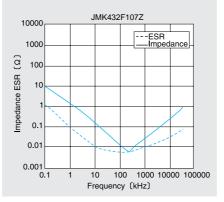

形名の口には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.
*高温負荷試験の試験電圧は定格電圧の1.5倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

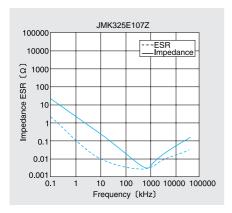

特性図 ELECTRICAL CHARACTERISTICS

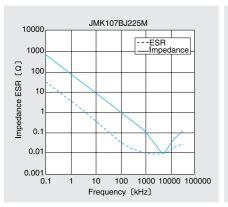

インピーダンス・ESR-周波数特性例 Example of Impedance ESR vs. Frequency characteristics

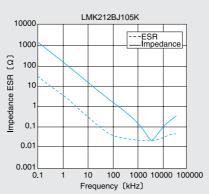

・当社積層セラミックコンデンサ例(Taiyo Yuden multilayer ceramic capacitor)

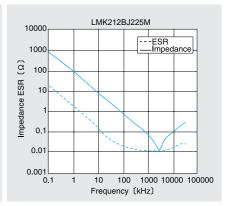


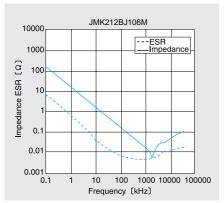


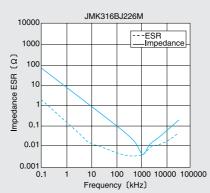


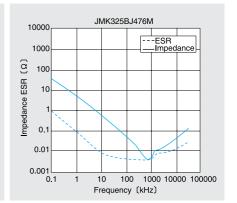


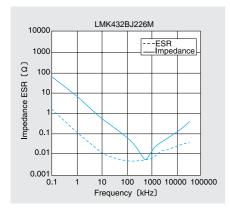


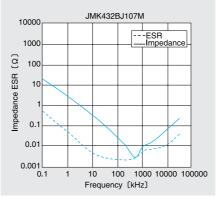


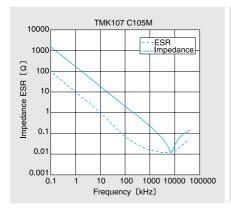


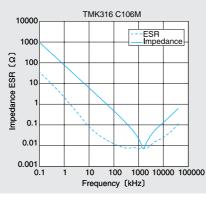


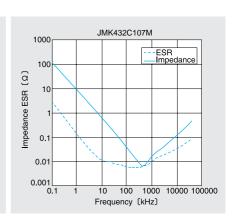








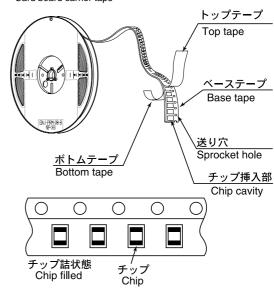




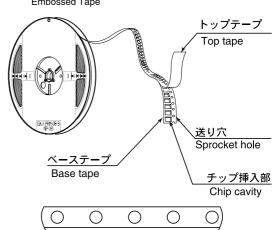
梱包 PACKAGING

①標準数量 Standard quantity ■袋づめ梱包 Bulk packaging

形式(EIA) Type	製品厚み Thickness	標準数量 Standard quantity	
.,,,,	mm(inch)	code	[pcs]
☐MK105(0402)	0.5	V, W	
E VK105(0402)	(0.020)	W	
□MK107(0603)	0.8 (0.031)	A Z	
□2K110(0504)	0.8 (0.031)	А	
□2K110(0304)	0.6 (0.024)	В	
□MK212(0805)	0.85 (0.033)	D	
□WIK212(0003)	1.25 (0.049)	G	
□4K212(0805)	0.85 (0.033)	D	
□2K212(0805)	0.85 (0.033)	D	
	0.85 (0.033)	D	1000
□MK316(1206)	1.15 (0.045)	F	
□IVIK310(1200)	1.25 (0.049)	G	
	1.6 (0.063)	L	
	0.85 (0.033)	D	
	1.15 (0.045)	F	
□MK225(4240)	1.5 (0.059)	Н	
□MK325(1210)	1.9 (0.075)	N	
•	2.0max (0.079)	Y	
	2.5 (0.098)	М	

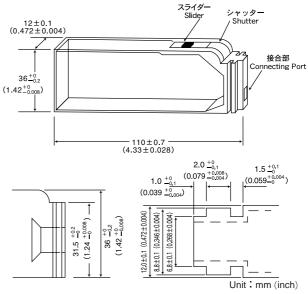

■テーピング梱包 Taped packaging

形式(EIA) Type	製品厚み Thickness			数量 I quantity cs]
	mm(inch)	code	紙テープ paper	エンボステープ Embossed tape
□MK063(0201)	0.3 (0.012)	Р	15000	_
☐MK105(0402)	0.5	V, W	10000	_
E VK105(0402)	(0.020)	W		
□MK107(0603)	0.45 (0.018)	K	4000	
	0.8 (0.031)	A Z	4000	
□2K110(0504)	0.8 (0.031)	Α	4000	_
⊔2K110(0304)	0.6 (0.024)	В	4000	_
	0.45 (0.018)	K	4000	_
□MK212(0805)	0.85 (0.033)	D	4000	_
	1.25 (0.049)	G	_	3000
□4K212(0805)	0.85 (0.033)		4000	_
□2K212(0805)	0.85 (0.033)	D	4000	_
	0.85 (0.033)	D	4000	_
	1.15 (0.045)	F	F	
□MK316(1206)	1.25 (0.049)	G	_	3000
	1.6 (0.063)	L	_	2000
	0.85 (0.033)	D		
	1.15 (0.045)	F		2000
□MI/205/4040\	1.5 (0.059)	Н	_	2000
□MK325(1210)	1.9 (0.075)	N	1	
	2.0max (0.079)	Υ	_	2000
	2.5 (0.098)	М	_	500
	1.9 (0.075)	Υ		
□MK432(1812)	2.5 (0.098)	M	-	500
	3.2 (0.125)	U		

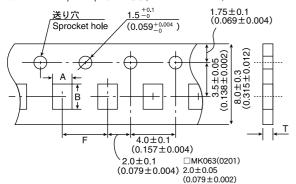

②テーピング材質 Taping material

紙テープ

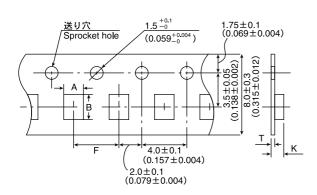
Card board carrier tape



エンボステープ Embossed Tape

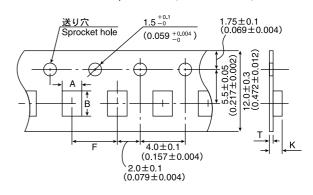

チップ詰状態 Chip filled チップ Chip

③バルクカセット Bulk Cassette


105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)

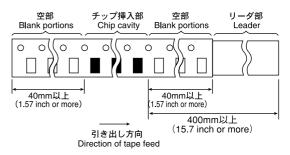
③テーピング寸法 Taping dimensions 紙テープ Paper Tape (8mm幅) (0.315inches wide)

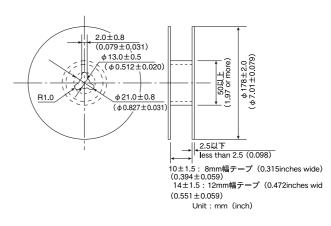
Type	チッフ	プ挿入部	挿入ピッチ	テープ厚み		
(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness		
	А	В	F	Т		
□MK063(0201)	0.37±0.06	0.67±0.06	2.0±0.05	0.45max.		
□IVIK063(0201)	(0.06±0.002)	(0.027±0.002)	(0.079±0.002)	(0.018max.)		
☐MK105(0402)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max.		
E VK105(0402)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max.)		
	1.0±0.2	1.8±0.2	4.0±0.1	1.1max.		
□MK107(0603)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max.)		
□2K110(0504)	1.15±0.2	1.55±0.2	4.0±0.1	1.0max.		
□2K110(0304)	(0.045±0.008)	(0.061±0.008)	(0.157±0.004)	(0.039max.)		
□MK212(0805)	1.65±0.2	2.4±0.2				
□4K212(0805)	(0.065±0.008)	(0.094±0.008)	4.0±0.1	1.1max.		
□2K212(0805)			(0.157±0.004)	(0.043max.)		
	2.0±0.2	3.6±0.2	1			
□MK316(1206)	(0.079±0.008)	(0.142±0.008)				
Unit: mm(inch)						


エンボステープ Embossed tape (8mm幅) (0.315inches wide)

Туре	チッフ	°挿入部	挿入ピッチ	テーフ	プ厚み
(EIA)	Chip	cavity	Insertion Pitch	Tape Th	ickness
	A B		F	K	Т
□ N N (0.4.0 (0.0.0 E)	1.65±0.2	2.4±0.2			
□MK212(0805)	(0.065±0.008)	(0.094±0.008)			
	2.0±0.2	3.6±0.2	4.0±0.1	2.5max.	0.6max
□MK316(1206)	(0.079±0.008) (0.142±0.008)		(0.157±0.004)	(0.098max.)	(0.024max.)
□MK205(4040)	2.8±0.2	3.6±0.2		3.4max.	
□MK325(1210)	(0.110±0.008)	(0.142±0.008)		(0.134max.)	

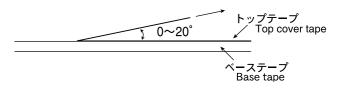
Unit: mm(inch)


エンボステープ Embossed tape (12mm幅) (0.472inches wide)


Туре	チッフ	[°] 挿入部	挿入ピッチ	テーフ	プ厚み
(EIA)	Chip cavity		Insertion Pitch	Tape Th	nickness
	A B		F	K	Т
□MK432(1812)	3.7±0.2 (0.146±0.008)	4.9±0.2 (0.193±0.008)	8.0±0.1 (0.315±0.004)	3.4max. (0.134max.)	0.6max. (0.024max.)

Unit: mm(inch)

④リーダ部/空部 Leader and Blank portion



⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて $0.1\sim0.7$ Nとなります。 The top tape requires a peel-off force of $0.1\sim0.7$ N in the direction of the arrow as illustrated below.

Multilayer Ceramic Capacitor Chips

			Specific				
I	tem	Temperature Compensating (Class 1)		High Permitivity (Class 2)		Test Methods and Remarks	
		Standard	High Frequency Type	Standard Note1	High Value		
1.Operating	Temperature	-55 to +125℃		B: −55 to +125°C	-25 to +85°C	High Capacitance Type BJ(X7R): -55~+125°C, BJ(X5R): -55~+8	
Range				F: -25 to +85℃		C(X5S): -55~+85°C, C(X6S): -55~+10 E(Y5U): -30~+85°C, F(Y5V): -30~+8	
	Temperature	-55 to +125℃		B: −55 to +125°C	-25 to +85℃	High Capacitance Type BJ(X7R): -55~+125°C, BJ(X5R): -55~+1 C(X5S): -55~+85°C, C(X6S): -55~+1	
Range		50VDC,25VDC,	16VDC	F: -25 to +85°C 50VDC,25VDC	50VDC,35VDC,25VDC	E(Y5U): -30~+85°C, F(Y5V): -30~+8	
3.Rated Volta	ige	16VDC	16000	50VDC,25VDC	16VDC,10VDC,6.3VDC 4DVC		
4.Withstandin	0	No breakdown or dam-	No abnormality	No breakdown or damag	ge	Applied voltage: Rated voltage ×3 (Class 1)	
Between te	rminals	age				Rated voltage × 2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)	
5.Insulation R	esistance	10000 MΩ min.		smaller.	$M\Omega .,$ whichever is the	Applied voltage: Rated voltage Duration: 60±5 sec.	
6 Canacitano	e (Tolerance)	0.5 to 5 pF: ±0.25 pF	0.5 to 2 pF : ±0.1 pF	Note 4 B: ±10%, ±20%	BJ: ±10%、±20%	Charge/discharge current: 50mA max. Measuring frequency:	
6.Capacitance (Tolerance)		1 to 10pF: ±0.5 pF 5 to 10 pF: ±1 pF 11 pF or over: ±5% ±10% 105TYPERA, SA, TA, UA only 0.5~2pF: ±0.1pF 2.2~20pF: ±5%	2.2 to 5.1 pF : ±5%	F: +80 %	C:±10%、±20% E:-20%/+80% F:-20%/+80%	Class1 : $1 \text{MHz} \pm 10 \% (\text{C} \le 1000 \text{pF})$ $1 \text{ k Hz} \pm 10 \% (\text{C} > 1000 \text{pF})$ $1 \text{ k Hz} \pm 10 \% (\text{C} \le 22 \mu \text{F})$ $120 \text{Hz} \pm 10 \text{Hz} (\text{C} \le 22 \mu \text{F})$ $120 \text{Hz} \pm 10 \text{Hz} (\text{C} > 22 \mu \text{F})$ Measuring voltage : $\text{Class1 : } 0.5 \sim 5 \text{Vrms} (\text{C} \le 1000 \text{pF})$ $1 \pm 0.2 \text{Vrms} (\text{C} > 1000 \text{pF})$ $1 \pm 0.2 \text{Vrms} (\text{C} \le 22 \mu \text{F})$ $0.5 \pm 0.1 \text{Vrms} (\text{C} \ge 22 \mu \text{F})$ Bias application: None	
7.Q or Tanger (tan δ)	nt of Loss Angle	Under 30 pF : Q≥400 + 20C 30 pF or over : Q≥1000 C= Nominal capacitance	Refer to detailed specification	B: 2.5% max.(50V, 25V) F: 5.0% max. (50V, 25V)	BJ:2.5%以下 3.5%以下※ 5.0%以下※ 10.0%以下※ C、E、F:7%以下 5.0%以下※ 9.0%以下※ 10.0%以下※ 11.0%以下※ 16.0%以下※ 20.0%以下※ See Table 1	$\label{eq:multiple} \begin{split} &\text{Multilayer:} \\ &\text{Measuring frequency:} \\ &\text{Class1:} 1\text{MHz}\pm10\%(\text{C}\!\leq\!1000\text{pF}) \\ &\text{1 k Hz}\pm10\%(\text{C}\!>\!1000\text{pF}) \\ &\text{Class2:} 1\text{ k Hz}\pm10\%(\text{C}\!\leq\!22_{\mu}\text{F}) \\ &\text{Class2:} 1\text{ k Hz}\pm10\text{Hz}(\text{C}\!>\!22_{\mu}\text{F}) \\ &\text{Measuring voltage:} \\ &\text{Class1:} 0.55\text{Vrms}(\text{C}\!>\!21000\text{pF}) \\ &\text{1}\pm0.2\text{Vrms}(\text{C}\!>\!1000\text{pF}) \\ &\text{Class2:} 1\pm0.2\text{Vrms}(\text{C}\!>\!22_{\mu}\text{F}) \\ &\text{0.5}\pm0.1\text{Vrms}(\text{C}\!>\!22_{\mu}\text{F}) \\ &\text{Bias application: None} \\ &\text{High-Frequency-Multilayer:} \\ &\text{Measuring frequency:} 1\text{GHz} \\ &\text{Measuring equipment: HP4291A} \\ &\text{Measuring ig: HP16192A} \end{split}$	
8.Temperature Characteristic of Capacitance	(Without voltage application)	CK: 0±250 CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250 UJ: -750±120	CH: 0±60 RH: -220±60 (ppm/C)	B: ±10%(-25~85°C) F: +30 %(-25~85°C) B(X7R): ±15% F(Y5V): +22 %	BJ: ±10% (-25~+85°C) C: ±20% (-25~+85°C) E: +20%/-55% (-25~+85°C) F: +30%/-80% (-25~+85°C) BJ(X7R, X5R): ±15% C(X5S, X6S): ±22% E(Y5U): +22%/-56% F(Y5V): +22%/-82%	According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be may to calculate temperature characteristic by the follow equation. $\frac{(C_{85} - C_{20})}{C_{20} \times \Delta T} \times 10^{-6} \text{ (ppm/C)}$ High permitivity: Change of maximum capacitance deviation in step 1 to Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R, X5S, X6S, Y5U and Yshall be +25°C	
9.Resistance Substrate	to Flexure of	SL: +350 to -1000 (ppm/c) Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF, whichever is larger.	Appearance: No abnormality Capacitance change: Within±0.5 pF	Appearance: No abnormality Capacitance change: B, BJ, C: Within ±12.5% E, F: Within ±30%	6	Warp: 1mm Testing board: glass epoxy-resin substrate Thickness: 1.6mm (063 TYPE: 0.8mm) The measurement shall be made with board in the bent posi Board R-340 Warp Warp (Unit: mm)	

Multilayer Ceramic Capacitor Chips

		Specifie			
Item	Temperature Com	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
I0.Body Strength	_	No mechanical damage.	_		High Frequency Multilayer: Applied force: 5N Duration: 10 sec. Press Pressing jie Chip L L W O.6L
1.Adhesion of Electrode	No separation or indicat	ion of separation of electr	ode.		Applied force: 5N Duration: 30±5 sec. Hooked jig R=05 Chip Cross-section
12.Solderability	At least 95% of terminal	electrode is covered by n	new solder.		Solder temperature: 230±5°C Duration: 4±1 sec.
13.Resistance to soldering	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	δ : Initial value Insulation resistance: In	/ithin ±7.5% (B, BJ) /ithin ±15% (C) /ithin ±20% (E, F)	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 mi 150 to 200°C, 2 to 5 min. or 5 to 10 mi Recovery: Recovery for the following period under the stated and condition after the test. 24±2 hrs (Class 1) 48±4 hrs (Class 2)
14.Thermal shock	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Capacitance change: Within $\pm 7.5\%$ (B, BJ) Within $\pm 15\%$ (C) Within $\pm 20\%$ (E , F) tan δ : Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality		Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30 ± 3 mi Step 2: Room temperature 2 to 3 mi Step 3: Maximum operating temperature 2 to 3 mi Step 4: Room temperature 2 to 3 mi Number of cycles: 5 times Recovery after the test: 24 ± 2 hrs (Class 1) 48 ± 4 hrs (Class 2)
I5.Damp Heat (steady state)	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5pF, whichever is larger. Q: C≥30 pF : Q≥350 10≤C<30 pF: Q≥275 +2.5C C<10 pF : Q≥200 + 10C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within $\pm 0.5 pF$, Insulation resistance: $1000~M\Omega$ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ $\tan \delta$: B: 5.0% max. F: 7.5% max. Insulation resistance: 50 $M\Omega \ \mu$ F or 1000 $M\Omega$ whichever is smaller.	Appearance: No abnormality Capacitance change: BJ:Within ±12.5% Within ±30%** C(X6S) Within ±25% C(X5S),E,F Within ±30% tan δ: BJ: 5.0% max.* 7.5% max.** 20.0% max.** 15.0% max.** 25.0% max.** 25.0% max.** 25.0% max.** 35.0% max.** 25.0% Multilayer: Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Recovery: Recovery for the following period under the sta dard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Recovery: Recovery for the following period under the sta dard condition after the removal from test chamber. 24±2 hrs (Class 1)	

Multilayer Ceramic Capacitor Chips

Item	Temperature Compensating (Class 1)		High Permittivity (Class 2)		Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
16.Loading under Damp Heat	Appearance: No abnormality Capacitance change: Within ± 7.5% or ±0.75pF, whichever is larger. Q: C≥30 pF: Q≥200 C<30 pF: Q≥100 + 10C/3 C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: C≤2 pF: Within ±0.4 pF	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Insulation resistance: $25 \text{ M}\Omega \mu \text{F}$ or $500 \text{ M}\Omega$, whichever is the smaller.	Appearance: No abnormality Capacitance change: BJ: Within±12.5% Within±15% Within±20% Within±25% Within±25% Within±30% tana: BJ: 5.0%max. 7.5%max. 20.0%max. C.E.F: 11%max. 7.5%max. 15.0%max. 15.0%max. 30.0%max. 25.0%max. 25.0%max. 15.0%max. 16.0%max. 17.0%max. 17.0%max. 18.0%max. 19.0%max. 19.0	According to JIS C 5102 Clause 9. 9. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 + 24 / 1 rs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 + 00 / 1 rrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: 24±2 hrs of recovery under the standard condition after the removal from test chamber.
17.Loading at High Temperature	Appearance: No abnormality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Q: C≧30 pF: Q≧350 10≦C<30 pF: Q≧275 +2.5C C<10 pF: Q≧200 + 10C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within $\pm 3\%$ or $\pm 0.3 \mathrm{pF}$, whichever is larger. Insulation resistance: $1000~\mathrm{M}\Omega$ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 4.0% max. F: 7.5% max. Insulation resistance: $50 \text{M}\Omega \mu \text{F}$ or $1000 \text{M}\Omega$, whichever is smaller.	whichever is the smaller. Appearance: No abnormality Capacitance change: BJ: Within±12.5% Within±20%** Within±25%(X6S) Within±30%(X5S) E, F: Within±30% tans: BJ:5.0%max. 7.5%max.* 20.0%max.** 20.0%max.** 15.0%max.** 15.0%max.** 15.0%max.** 15.0%max.** 15.0%max.** 15.0%max.** 16.0%max.** 25.0%max.** 25.0%max.** 25.0%max.** 25.0%max.** See Table.2 **See Table.5 Insulation resistance: 50 MΦμF or 1000 MΩ, whichever is smaller.	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C(Class 1, Class 2: B, BJ(X7R)) 85±2°C (Class 2: BJ,F) Duration: 1000 ⁺⁰⁸ hrs Applied voltage: Rated voltage×2, , ×1.5 (Table.4) Recovery: Recovery for the following period under the standard condition after the removal from test chamber. As for Ni product, thermal treatment shall be performed prior to the recovery. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 125±3°C (Class 1) Duration: 1000 ⁺⁴⁸ hrs Applied voltage: Rated voltage×2 Recovery: 24±2 hrs of recovery under the standard condition after the removal from test chamber.

Note 1: For 105 type, specified in "High value".

Note 2: Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 ±0 /-10 °C followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 3: Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note on standard condition: 'standard condition' referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 65 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

Note 4: Specified value for Instration Resistance of Table.3 only: 100MΩ μF or more.

Table.1

Table. I		-			
Item	tan∂	Item	tan∂	Item	tan∂
BJ:LMK type; 105 type ($C \le 0.047 \mu F$) 107 type ($C \le 0.47 \mu F$) 212 type ($C \le 1.0 \mu F$) 316 / 325 / 432 type EMK type; 063/105/107/212/316/432 type 325 type ($C < 22 \mu F$)		BJ: JMK type; 063 type 107 type (C \leq 1.0 μ F) 212 type (C \leq 4.7 μ F)General 316 type (C \leq 10 μ F)General 325 type (C \leq 22 μ F) 432 type (C \leq 47 μ F)		F: LMK type; 212 type 316 type (C=10 μ F): General (C=4.7 μ F): Lowprofile 325 type (C > 10 μ F) EMK type; 105 type (C \geq 0.068 μ F) UMK type; 325 type (C > 4.7 μ F)	9.0%max.
TMK type; 316 type (C > 0.47 μF) 325 type (C≦0.47 μF) 432 type	3.5%以下	LMK type; 105 type ($C \ge 0.056 \mu F$) 107 type ($C > 0.47 \mu F$) 212 type ($C \ge 2.2 \mu F$)	5.0%max.	BJ: 表3 C: 107/212/316 type F: LMK type; 105 type (C =0.22 μF)	10.0% max.
GMK type; 212 type 316 type 325 type UMK type; 212 type (C > 0.1 µF)	0.07021	EMK type; 325 type ($C \ge 2.2\mu\Gamma$) TMK type; 325 type ($C \ge 22\mu\Gamma$) TMK type; 325 type ($C > 4.7\mu\Gamma$) E4K, L4K, J2K, L2K type F: 105 type (50V, 25V)		E.F: JMK type; 063 / 105 / 107 / 212 / 316 / 325 / 432 type LMK type; 107 type, 325 type 432 type, 316 type (C> 10 \mu F)	16.0%max.
316 type (C $\ge 0.47 \mu\text{F}$)				F: JMK type; 105 type (C=1 µF)	20.0%max.
325 type L2K type (C ≦ 0.047μF) 、T2K type					

T	a	h	le	2

Table.2	
Item	tan∂
BJ: JMK type; 107 type (C > 2.2 μF)	
212type (C > 10μ F)	
316type (C > 22μ F)	
325type (C > 47μ F)	
432type (C > 100 μF)	
LMK type; 063 type	7.5%max.
105 type (C≧0.056μF)	
107 type (C≧0.47μF)	
212 type (C > 1 μF)	
TMK type; 325 type ($C \ge 10 \mu F$)	
E4K, L4K, J2K, L2K type	
F: 105 type (50V, 25V)	
BJ: EMK type; 325 type (C≥22 μF)	10.0% max.
F: LMK type; 105 type (C=0.22 μF)	16.0% max.
F: JMK type; 063 type	10.0% IIIax.
F: JMK type; 105 / 107 / 212 / 316 / 325 / 432 type	19.5%max.
LMK type; 107 / 432 type	
BJ: Table.3	20.0%max.
F: JMK type; 105 type (C=1 μF)	25.0%max.

Item
BJ: JMK type; 105type (C>0.1μF)
107type (C>1.0 μF)
212type (C>4.7 μF)General
$(C \ge 4.7 \muF)$ Lowprofile
316type (C>10 μF)General
(C ≥ 10 μF)Lowprofile
325type (C >22 μ F)
432type (C >47 μF)
Table.4

BJ: 105type (C>0.1 μ F) 107type (C>1.0 μ F)
212type (C>4.7 μ F) \(316type (C>10 μ F)
325type (C>22 μ F). 432type (C>47 μ F)
F: 105type (C>0.47 μ F) 212type (C>4.7 μ F)
325type (C>22 μ F) 、432type (C>47 μ F)

rabie.5				
		Item	Ca	pacitance change
Damp Heat	BJ: JMK type;	212 type	(C > 4.7μ F)General (C $\ge 4.7 \mu$ F)Lowprofile	Within±30%
Loading under	BJ: EMK type;	325type	(C ≥ 22 μF)	Within±15%
Damp Heat	BJ: JMK type;	316 type	(C > 10μ F)General (C $\ge 10\mu$ F)Lowprofile	
	TMK type;	325 type 325 type	(C > 22 µF) (C ≥ 10 µF)	Within±20%
	BJ: JMK type;	107 type	(C ≥ 10 μF)	Within±25%
	BJ: JMK type;	212 type	(C > 4.7μ F)General (C $\ge 4.7 \mu$ F)Lowprofile	Within±30%
Loading at high Temperature	BJ: JMK type;	212 type	(C > 4.7μ F)General (C $\ge 4.7 \mu$ F)Lowprofile	
		316 type	(C > 10μ F)General (C $\ge 10\mu$ F)Lowprofile	Within±20%
		325 type	$(C > 22 \mu F)$	
	TMK type;	325 type	(C ≥ 10 μF)	
	BJ: JMK type;	107 type	(C > 10 μF)	Within±25%

Stages	Precautions	Technical considerations
.Circuit Design	Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. 2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.	
2.PCB Design	Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.	1.The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amourts.(larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Solder-resist Chip capacitor Chip capacitor Chip capacitor Solder-resist Chip capacitor Type 107 212 316 325 L 1.6 2.0 3.2 3.2 Size W 0.8 1.25 1.6 2.5 A 0.8~1.0 1.0~1.4 1.8~2.5 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6 1.8~2.5
		Recommended land dimensions for reflow-soldering (unit: mm) Type

0.8

212 (2 circuits) 2.0

1.25

0.5~0.6

0.5~0.6 0.5~0.6 1.0

0.5

110 (2 circuits)

1.37

1.0

0.35~0.45

0.55~0.65 0.3~0.4

0.64

c d

Type e L W

а

b

С d

Stages	Precautions		Technical consider	rations
2.PCB Design		(2) Examples of	of good and bad solder applicatio	n
		Items	Not recommended	Recommended
		Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist
	Component placement close to the chassis	Chassis Solder(for grounding)	Solder-resist	
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron	Solder-resist
		Horizontal component placement		Solder-resist
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can	_		pacitor layout; SMD capacitors should stresses from board warp or deflection.
	be subjected to mechanical stresses in subsequent manufac-		Not recommended	Recommended
	turing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.
	Great Se carefully performed to minimize street.	of mechanical	•	pard, it should be noted that the amounting on capacitor layout. The example in.
	Perforati	on————————————————————————————————————	D D D D D D D D D D D D D D D D D D D	
		the capacitors of in order from le	an vary according to the method of ast stressful to most stressful: pu	ns, the amount of mechanical stress on used. The following methods are listed ash-back, slit, V-grooving, and perfora- also consider the PCB splitting proce-

Stages	Precautions		Technical consider	ations
matic placement 1. Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards. 2. The maintenance and inspection of the mounters should be conducted periodically.		capacitors, cau before lowering (1)The lower limit board after cory (2)The pick-up pr (3)To reduce the a supporting pins	sing damage. To avoid this, the fithe pick-up nozzle: of the pick-up nozzle should be a certing for deflection of the board. essure should be adjusted between amount of deflection of the board of the should be adjusted between amount of deflection of the board of the board of the should be adjusted between the board of the board	on 1 and 3 N static loads. aused by impact of the pick-up nozzle, under the PC board. The following dia-
			Not recommended	Recommended
	Single-sided mounting	Cracks	Supporting pin	
		Double-sided mounting	Solder peeling Cracks	Supporting pin-
before the soldering stage, may lead to degraded capa characteristics unless the following factors are appropri checked; the size of land patterns, type of adhesive, am applied, hardening temperature and hardening period.		cracking of the	capacitors because of mechanic ring of the width between the align	
	Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhe-	on the capacitors and lead to cracking. Moreover, too little or too much adher to the board may adversely affect component placement, so the following should be noted in the application of adhesives. (1)Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during the solder process. b. The adhesive should have sufficient strength at high temperatures. c. The adhesive should have good coating and thickness consistency. d. The adhesive should harden rapidly f. The adhesive must not be contaminated. g. The adhesive should have excellent insulation characteristics. h. The adhesive should not be toxic and have no emission of toxic gasses.	the capacitors may result in stresses too little or too much adhesive applied accement, so the following precautions atts on the board during the mounting & high temperatures. An expectation of the following precautions are so the board during the mounting & high temperatures. An expectation of the following precautions are so that	
		(2)The recommer	nded amount of adhesives is as fol	
		Figure	212/316 case size	· · · · · · · · · · · · · · · · · · ·
		b a	0.3mm 100 ~12	
		С	Adhesives should no	
		Amou	nt of adhesive A	ofter capacitors are bonded

Stages	Precautions	Technical considerations
Soldering	Selection of Flux 1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance of the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To min mize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process shound to be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
	And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile
		Temperature (C) 300 250 150 100 100 100 100 100 100 100 100 1
		Solder The Capacitor The Capac
		Because excessive dwell times can detrimentally affect solderability, soldering durition should be kept as close to recommended times as possible. [Wave soldering]
		Temperature profile Temperature (°C) 300 250 200 150 100 50 Over 2 minutes Within Gradual
		Caution 1. Make sure the capacitors are preheated sufficiently. 2. The temperature difference between the capacitor and melted solder should not greater than 100 to130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the capacitors designated as for reflow solding only.

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature (C) 300 Preheating 230°C 280°C 300 150 100 Ver 1 minute Within Gradual 3 coolling Seconds
		Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. The soldering iron should not directly touch the capacitor.
5.Cleaning	Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics.	The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked;
		Ultrasonic output Below 20 W/ℓ Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6.Post cleaning processes	1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recommended.	
7.Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices.	
	Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.	

Stages	Precautions	Technical considerations
8.Storage conditions	Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. 2. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.